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[Abstract] 
 

In this paper, using the framework of a sequence of economies, we shall examine 
limiting properties of equilibrium allocations in a strategic Lindahl game as economies get 
larger.  We show that, contrary to a private goods economy, a public good economy does not 
possess the robustness against strategic manipulation in a large economy.  In particular, 
as the economy were to get larger, the larger would be the number of free riding agents and 
consequently the limiting allocation would degenerate to a Walrasian allocation with no 
production of the public good.   
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1. Introduction 
 

In this paper, we continue to examine properties of strategic Lindahl equilibrium 
allocations.  In particular, in the framework of a sequence of economies, we shall examine 
limiting properties of equilibrium allocations in a strategic Lindahl game as economies get 
larger. 

It is well known that a Lindahl allocation mechanism is not incentive compatible as 
pointed out by Samuelson (1954).  But Hurwicz (1972, and 1979) shows that this is not due 
to the inherent features of public goods, but a similar incentive compatibility problem 
arises even for a private goods economy.  Although the incentive or the free rider problem 
for the provision of a public good is recognized as one of the most important problems for a 
public good economy, this observation due to Hurwicz has blurred the distinction between 
private goods and public goods. 

We formulate the incentive aspect of an economy as interacting strategic behaviors of 
agents trying to manipulate equilibrium outcomes to their benefits.  One problem of 
interacting strategic behaviors of agents is the resulting indeterminacy generated by such 
behaviors.  We have shown in Otani and Sicilian (1982, 1990) and Otani (1996) that 
strategic behaviors in a private goods economy result in real indeterminacy of equilibrium 
allocations and moreover the dimension of this indeterminacy stays large even for a large 
economy.  In Otani (2001 b), we have shown a similar result for a public good economy that 
the dimension of indeterminacy for the public good economy stays large for a large economy 
and furthermore is greater by the number of contributing agent types compared with that 
of the private goods economy shown in Otani (1996).  However for a private goods economy 
Otani and Sicilian (1990) show that if strategic demand functions are required to be smooth 
and a sequence of aggregate strategic demand mappings converges to a regular aggregate 
demand mapping, then a sequence of strategic equilibria converges to a true Walrasian 
competitive allocation of the limit economy.  Thus we may assert that in the case of a 
private goods economy, true Walrasian allocations in a large economy are sufficiently 
robust against strategic manipulations of agents.  In view of this result for a private goods 
economy, one natural question remaining to be answered is whether or not a similar 
robustness of a true Lindahl equilibrium obtains for a public good economy.  We shall show 
in this paper that the answer to this question is in the negative and there do exist 
differences between private goods and public goods. 
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2. The Model, Definitions and Assumptions for a Finite Economy 
 

In this section, we gather our basic model and definitions for a finite economy in our 
previous papers in Otani (2001 a and 2001 b) except with a minor difference in the 
definition of strategies.  We consider an economy with 1 public good,  private goods and 
T consumption agents for a finite economy.  We abuse a notation using T for the number of 
agents as well as for the set of all agents. 

l

 
2.1. Production of the public good  

The public good is produced by the application of inputs of private goods and the 
technology is assumed to be represented by the production function  denoted 
by .  The production function is assumed to be continuous, strictly quasi-concave, 

 and homogeneous of degree one.  An input coefficient vector is denoted by 

.  Given the price vector  of private goods, the unit cost function is defined as 

follows: 

: lF R R+ →
( )y F v=

(0) 0=

/a v y≡

F

y p

 { }( ) min ( ) 1
y

y ya
c p p a F a≡ ⋅ ≥

0

q

*

 

The minimizing vector of input coefficients as a function of prices of private goods will be 

denoted by: a a .  Clearly c p .  The profitability condition for the 

production of the public good is given as follows: 

( )y y p= ( ) ( )yp a p= ⋅

  and ( ) 0,q c p− ≤
  [ ( )]y q c p− =

where  denotes the price of the public good with  being the contribution or 

the cost share of agent . 

tt T
q

∈
≡∑ tq

t
 
2.2. Consumption agents 

Consumption agent t  is characterized by  where  is his/her 

utility function and  with  indicating the set of strictly positive real numbers.  

The range  of utility functions is assumed to be the set of extended real numbers and 

( , )t tu ω 1: l
tu R R+

+ →

l
t Pω ∈ P

*R
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thus possibly assume an infinite value at the boundary of the consumption set as in 
log-linear functions.  We assume that the utility function is strictly quasi-concave, 

continuously differentiable on the positive orthant,  and if 

, then .  The budget map of agent  is defined as follows: 

1( , ) 0t x t y tdu d u d u +′=

t

l

( , ) ( ,0)t t t tu x y u ω> l
tx P∈

{ }tp ω⋅ ≤ ⋅

1( ) l
tC s R +

+⊆

: l
tf P R R+ +× →

( , )t tq

( ,i

tS

{ }{ }( , ) ( )t t tB p q C s∈ ∩

( , )t t ts f k=

, )ya c s

( ,t tx q

[ ( , , ), ( ,t t tf p y s k p

) argy≡ =

tt T∈

( , )p y

 1( , ) l
t t tB p x y R p x q y+

+≡ ∈ ⋅ +  

Let  be a parametric strategy space for agent t that is assumed to be a nonempty subset 
of a finite dimensional Euclidean space.  We suppose that a given parameter  
determines a strategic utility function  the agent uses.  Strategic utility 

functions are assumed to be  where .  A strategic utility 

function in turn determines a strategic demand function  for private 

goods and a cost share function  for the public good as follows:  

t ts S∈
( , , )t t tu x y s

*)ts R→

R R+ +× →

) : (t tu s C

: l
tk P

l

  [ ]( , ), ( , )t tf p y k p y

 ) ( , max ( , , ) ( , )t t t t tx u x y s x y . 

In our previous papers, we wrote a pair of strategic demand cost share functions as 

.  Since in this paper we deal exclusively with a strategic demand 

function for private goods and a strategic cost share function for the public good, we 
consider a pair of these two functions as a strategy denoted by  instead of 

parameterized strategies we employed in our previous papers of Otani (2001 a and 2001 b). 

]t

S

, )y s

 
2.3. Definitions of equilibria 

Let us denote .  A Lindahl equilibrium given ( ,  and a consistent 

Lindahl equilibrium are defined as follows. 

S ≡∏

 
Definition 1. (a)  is said to be a Lindahl equilibrium given lP R+∈ ×
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( , , ) l
ya c s R R S+ +∈ × ×

{ ( ,
t T

f p
∈

( ,tt T
k p

∈∑
( , ) lp y P R+∈ ×

( )y ya a p=

( ,

t T∈

( , )t tx f p y=

: l
tk P R R+ +× →

 if 

     (i) ∑ , and }) 0t t yy a yω− − =

     (ii) . ) 0y c− =

(b)  is said to be a consistent Lindahl equilibrium given  if, in 
addition to (i) and (ii) above,  

s S∈

     (iii)  and  ( )c c p=

holds. 
 

The set of Lindahl equilibria given  will be denoted by  and the set of 

consistent Lindahl equilibria given  will be denoted by . 

( , , )ya c s

s

( , , )yL a c s

( )L s
 

Definition 2. ( ,  is said to be a strategic Lindahl 

equilibrium if (i)  and  for every , and (ii) for every 

 and for every , if , ,  

and , then . 

* * * *, , ) l lTp y x s P R R S+ +∈ × × ×

* * *) ( )p y L s∈ * *( ,t tx f p=

( , )t t t ts f k S= ∈ ( , )p y L∈

* *( , ) ( , )t t t tu x y u x y≤

* y

( ,a

*)

+

t T∈

a a=* * *, / )y tc s s * *( )y y p * *( )c c p=

 
 
3.  A Sequence of Economies 
 

In this paper, the space of strategies is a set  of pairs  of smooth or  

-demand mappings where  is a -map for private goods, 

 is a C -cost share map.  The projections of  to the space of  and 

tS ( , )t tf k

tS

1C

: l l
tf P R R+× → 1C

1
tf
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the space of  will be denoted respectively by  and .  Further  

and  

tk

t T
S S

∈

tfS

T

tkS f tt T
S S

∈
≡∏ f

kk t≡∏

→∞

n

),
p

, )s
p y

µ λ≡
R

nµ

t dω λ

dλ

( , ;G p

( , )u ω
1l R+

+ →

λ

n S→

nS

)n

µ

( ,n n
t ts f k

A
n

[0,1]∞ ≡
: n lx T R+→

( , )t ts f k≡

n

x s
nµ

)

∞

:T∞ ∞E
n

t

) C∈
( ,n x s

S
nµ

n a y

n c

) n
n

t T∈

We shall consider a sequence of economies.  Let  be a sequence of sets of agents (or 

agent’s name) with 

n

nT < ∞  and nT →∞

[0,1]
nλ

nλ

 as .  An agent is characterized by a 

pair  where  denotes an endowment vector of private goods and 
 is a (true) utility function satisfying all assumptions in section 2.2.  The set 

of agents’ characteristics will be denoted by  considered as a measurable space as in 

Hildenbrand (1974, 1975).  A sequence of economies is a mapping  assigning 
agent’s names to agents’ characteristics.  Let  be a counting measure on T .  An 
economy with a continuum of agents will be denoted by  where T .  
Let  be a Lebesgue measure on .  An allocations in E  is a mapping  

which is integrable with respect to  and a strategy profile in  is a mapping 

 integrable with respect to  such that for every t T ,  

satisfying the budget condition that for every  

n

λ

( ,p y

lPω∈
:u R

:s T

A

:n nT →E

→A

nE

n∈ t

⋅

y+

)

 . ( , ) ( , )t tp f p y k p y y ω⋅ + =

Let  be the set of strategy profiles in . nE
The set of strategic Lindahl equilibria  for economy  will be denoted by 

.  Given a strategic Lindahl equilibrium ( , , let  be the joint 
distribution of ( ,  on , i.e.,  where  and  are 
considered as functions from T  respectively to  and .  Given , marginal 
distributions of  will be denoted by , , , , etc.  Given 

, let us define 

( , ,p y x

( )nµ A

nE
)

µ

(C E

=

, , ( nx s E
1, )n n −E

l
+

( )x ( )s

µ

( f

, , )u x sω

n

lR S+× ×A
n

n

 , and { }( , ; ) ( , ) ( )
n

n n
y tT

F p y a f p y t≡ −∫

 . ( , ; ) ( , ) ( )
n

n n
tT

G p y c k p y t≡ −∫

We can similarly define  and  for the economy E  given 

.  Then we can say that ( ,  is a Lindahl equilibrium given 

( , ; )yF p y a∞ )y c∞

lP R+∈ ×( ,t tf g∞ ∞ )p y
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( , , )n l
yc a s R R S+ +∈ × ×

( , ) lp y P R+∈ ×

nλ

( ) ({ })n nt tλ λ≡

τ

 if  

( , ,x p y a

(
n

n
tT
d tω ω λ≡ ∫

( , , , )u x sω lR+×
1C 1lP +

∞E
( , ) lp y P R∞ ∞

+∈ ×

n Kµ ⊆

µ

  and G p . ( , ; ) 0n
yF p y a = l

)n
t

( , ; ) 0n y c =

Also  is a consistent Lindahl equilibrium if  and  

holds in addition.  Note that, for a finite economy E , the integration is a summation 

since  is a counting measure.  For example,  with 

.  Then given  for t , the residual supply map of private 

goods to agent  is given as follows: 

( )y ya a p=

( )
T

t =∑

( )c c p=

( )t

n

nn

n n
t tT

x d xλ λ∫

( ,n n
t ts f k= τ≠

 { }{ }/{ }
, / ) 1 ( ) ( , ) ( )

n

n n n n n n
y tT

s s f p y d t a yτ τ τ
λ τ ω λ≡ − ∫  y−

)
)

)

where . )

 
 
4.  Limiting Properties of Equilibrium Allocations of a Strategic Lindahl Model 
 

Given a sequence of economies, we investigate limiting properties of equilibrium 
allocations of our strategic Lindahl model.  Our main result is the following proposition 
whose proof proceeds in several steps. 

 
Proposition.  Let ( ,  and let  be the joint distribution of 

 on A  induced by .  We assume that (a) functions in  
are  on  endowed with the topology of the C -uniform convergence; (b)  
converges weakly to  for some distribution  on  and thus  
converges to  in distribution; (c)  for every n and ( ,  converges to 

; (d) there exists a compact subset  of  such that 

supp{ }  for each n and supp{ }  where supp{  denotes the support of a 

measure ; (e) for every supp{ } , 

, , ) (n n n n np y x s C∈ E
S× ( ,n nE

µ∞

0ny >

Kµ∞ ⊆

f ∈ ( )fµ∞

nµ

1

∞

, nx s S
nµ
nEµ lR S+× ×A

np y
lR+A

}

n

× ×K

µ

S

( , )f p∞∂ y y∂  is well-defined for ; (f) 0y >
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F ∞

( ,u

 and  are C  with respect to  respectively at ( ,  and ( ,  

for every  where and ; (g) for every 

supp{ } ,  is  on ,  is strictly quasi-concave and C  

with respect to , and 

G∞

∈

1

0

∞ A

lx P∈

( , )p y

(y ya a p∞

lP +

; yp y a∞

( )p∞

)∞ )

)∞

;p y c∞ ∞

1

y >

µ

=

1C 1

c c∞ =

), )xω ( , )x u ( ,0u x

{ ( , )u x y∂ } 0l0
lim
y

x
↓

≡(u x,0)∂ ∂ x∂ ; (h)  

{ }p∂
0

lim
y

p
↓

( ,0; ≡)a∞∂ ∂ ( ,F p∞ ∞∂ ; )y yy a∞F p

{ }) p∞ ∂
0

0; ic∞( , m) l
y

p
↓

∂ ∂

0y >

( , ;y c∞∂G p∞ ∞ G p∞≡

(
(

∞ ∞

∞ ∞

,
,

; )
; )

y a
y c

∞

∞

∂ ∂
∂ ∂

( ,
( ,
p y
p y

∞ ∞

∞ ∞

; )
; )

y ya
c

∞

∞

 ∂ ∂
 ∂ ∂ 

p
p

F
G

y
l

y
 

=  
 

rank

0y ≥

( )) p∞∂ ∂

xd

( , ;p y a∞ ∞

0∞ =

1l=

nµ

( )x

yF

y

rank

( , x

−

( )dµ ω µ∞ −∫ ∫µ

µ∞

=

( , ,u ω )x ∈ ( ,0) /u x∂ ∂

( )n
ya p+∫ ∫

(u

(nxdµ=

,0) /x∂ ∂

)x −

x p p∞ ∞=

( )ndω µ ω +∫

nµ

tω λ

µ∞

( )n t{ }n n0 (l t= −
nT

p

∞ ∞  and 

 

are well-defined and finite; (i) for every  

 
F p
G p

, and 

for every , 

 . 

Then the limit of the equilibrium distribution  is a degenerate Walrasian 

equilibrium distribution , i.e., (i) , (ii) , and (iii) for 

every supp{ } , 

∞

A

0lω∞

) { }x . 

 
Proof.  We proceed with our proof in several steps. 
 
Step 1.  Show the feasibility in the limit economy. 

 
Proof of Step 1:  For private goods, by changing the variables of integration and then 

by the weak convergence of  to , we have that 

  ( )n
yx d a
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 . ( ) ( ) ( )yxd x d a pµ ω µ ω∞ ∞→ − +∫ ∫ ∞

Similar argument applies to the feasibility condition on the public good cost shares. 
 

Step 2.  We show that 

 lim ( , ; ) ( , ; )n n n n
y yn

F p y a p F p y a p∞ ∞ ∞ ∞

→∞
∂ ∂ = ∂ ∂ , and 

 lim ( , ; ) ( , ; )n n n n
y yn

F p y a y F p y a y∞ ∞ ∞ ∞

→∞
∂ ∂ = ∂ ∂ . 

 
Proof of Step 2:  By the change of variables, 

 { }( , ; ) ( , ) (
n

n n n n n n n n
y tT

F p y a p f p y p d tλ∂ ∂ = ∂ ∂∫ )  

 { }( , ) (
f

n n n

S
f p y p d fµ= ∂ ∂∫ ) . 

By (d), there exists a compact set  such that supp .  Let us write fK { }( )n
ff Kµ ⊆

( )( , ) ( , )D f p y f p y p≡ ∂ ∂

nh h

.  Since  is compact,  is equicontinuous 

(Mas-Collel [1985, K2.1 on p.51]).  Let  and .  

Then  converges to  uniformly.  Therefore using E4.1 in Mas-Collel [1985, p.25], we 
can conclude that 

fK ( )( , )D f p y

, )ny ( )h f( ) ( )(n nh f D f p≡ ( )( , )D f p y∞ ∞≡

 { }( , ) ( ) ( ) ( ) ( ) (
f f

n n n n n

S K K
f p y p d f h f d f h f d fµ µ ∞∂ ∂ = →∫ ∫ ∫ )

f

µ  

 { }( , ) ( ) ( , )
fK

f p y p d f F p y pµ∞ ∞ ∞ ∞ ∞ ∞= ∂ ∂ = ∂ ∂∫ . 

Similar argument applies to the case of partial derivative with respect to . y
 

Step 3.  Let  be the distribution on S  generated by  for .  

Then  converges weakly to .  Using similar arguments as in Step 2, we can 

get: 

( )n fτµ f
n

tf /{ }nt T τ∈

( )n fτµ ( )fµ∞
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 { } { }
{ }

lim ( , ) ( ) ( , ) ( )
n

f

n n n n
tT Sn

f p y p d t f p y p d f
τ

λ µ∞ ∞ ∞

→∞
 ∂ ∂ = ∂ ∂ ∫ ∫ , and 

 { } { }
{ }

lim ( , ) ( ) ( , ) ( )
n

f

n n n n
tT Sn

f p y y d t f p y y d f
τ

λ µ∞ ∞ ∞

→∞
 ∂ ∂ = ∂ ∂ ∫ ∫ . 

 

Step 4.  We claim that for every supp , there exists 

supp{  such that , 

( , , )u xω ∈

, , )n n nu x

{ ( , )xµ∞ A

, )u x

}

}( , , )n n nu xω ∈ ( , )n xµ A lim( ( ,
n

ω ω
→∞

=

 lim ( , ) ( , )n n n

n
u x y x u x y x∞

→∞
∂ ∂ = ∂ ∂ , and 

 lim ( , ) ( , )n n n

n
u x y y u x y y∞

→∞
∂ ∂ = ∂ ∂ . 

 
Proof of Step 4:  Since  converges weakly to , we have that 

supp{
( , )n xµ A ( , )xµ∞ A

}( , ) {x Lµ∞ ⊆A i supp[ ( , ]}n xA

})

lim(
n→∞

µ

( , xA

.  (See Hildenbrand [1974, p. 192].)  Therefore for 

each supp , there exists supp  such that 

.  Thus .  With -topology on the 

space of , the result follows. 

( , , )u xω ∈

, , ) ( , ,n n nu x uω =

u

{µ∞

)xω

( , , )n n nu xω ∈

) ( , , )n u x y∞=

{ nµ A

1C

}( , )x

lim(
n→∞

, ,n nu x y

 

Step 5.  We claim that (i) for each supp{ } ,  ( , , )u xω ∈ ( , )xµ∞ A

 { } { }( , ; ) ( , ) 0y lF p y a p u x y x∞ ∞ ∞ ∞ ∞′ ′∂ ∂ ∂ ∂ = , 

and (ii) there exists  such that ( , , )u xω ∈ ( , )K xA

 { } { }( , ; ) ( , )yF p y a y u x y x∞ ∞ ∞ ∞ ∞′ ′∂ ∂ ∂ 0∂ =

)xA

 

where  is a compact set such that supp{ }  for every . ( , )K xA ( , ) ( ,n x Kµ ⊆A n
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Proof of Step 5:  To prove (i), fix supp{  as in Step 4.   Let agents 

in the sequence  of Step 4 be denoted by  and consider the maximization 

problem for agent : .  Then the first-order 

condition with respect to  evaluated at ( ,  can be written as follows: 

( , , )u xω ∈

( ) ( ) ( ,n nu xτ τ

p x

}
)



( , )xµ∞ A

( )nτ

{ }( ), / ),y na s sτ

, , )n n
n yy a

( , ,n n nu xω

( )nτ

p

max ,
p

p y y

( )
n n

τ

 { }{ } ( ) ( ) ( )( )
( , ) ( ) ( , ) 0

n

n n n n n n
t n nT n

f p y p d t u x y xτ τ ττ
λ

′ ′   ∂ ∂ ∂ ∂   ∫ n l= . 

Note that the above condition holds for any agent whether or not he/she is constrained by 
the level of the public good.  (See Otani 2001 b, pp. 8-9 for constrained and unconstrained 
agents.)  Taking the limit yields 

 { } { }( , ; ) ( , ) 0y lF p y a p u x y x∞ ∞ ∞ ∞ ∞′ ′∂ ∂ ∂ ∂ =

}

. 

  To prove (ii), first by the assumption (c), we have that .   Therefore we may 
suppose that for each , there exists an unconstrained agent  with 

supp  who is contributing positively for the public good.  

Then for this agent , the first-order condition with respect to the level of the public 

good can be written as follows: 

0ny >
n

{ A

( )nτ

( ) ( ) ( )( , , )n n n
n n nu xτ τ τω ∈ ( , )n xµ

)n(τ

 ( ) ( ) ( ) ( ) 0n
n n n nx y u x u yτ τ τ τ

′ ′   ∂ ∂ ∂ ∂ + ∂ ∂ =    

Also noting that 

 { } { }
{ }{ }( , . , / ) 1 ( ) ( , ) ( )

n

n n n
y tT

x p y a s s y f p y y d t aτ τ τ
λ τ λ∂ ∂ = − ∂ ∂∫ n n

y+ , 

the first-order condition with respect to  for the unconstrained agent  becomes y ( )nτ

 { }{ } ( ) ( ) ( )( )
( , ) ( ) ( , )

n

n n n n n n n
y t n nT n

a f p y y d t u x yτ τ ττ
λ

′ ′   + ∂ ∂ ∂ ∂   ∫ nx  

 ( ) ( ) ( )( ) ( , ) 0n n n
n nn u x y yτ τλ τ  − ∂ ∂  =

xA

)

. 

By (d), there exists a compact set  such that supp{ }  for every 

.  Thus the sequence  has a convergent subsequence converging to 

( , )K xA

( ) ( ),n n n
n n nxτ τ τ

( , ) ( , )n x Kµ ⊆A

n ( )( ,u ω
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( , , )u xω  in .  Since ( , )K xA ( ) ( ) ( )m ( ) ( , ) 0n n n
n nn

n u x y yτ τλ τ
→∞

∂li , we have that for this 

 in , 

∂ =

( , , )u xω ( , )K xA

{ } { }( , ; ) ( , ) 0yy a y u x y x∞ ∞ ∞ ∞ ∞′ ′∂ ∂ ∂ ∂

( , ) lp y P R+∈ ×

( ) ( , ) ( )
l

f gS S
f y g p y d g p dµ µ

+

∞ ∞⋅ + =∫ ∫p f

{ } { }
{ } { }

) ( , ; ) 0
0) ( , ; )

y y

y y

a p G p y a p p
ya y G p y a y

∞ ∞

∞ ∞

 ′ ′∂ ∂ ∂ ∂     =   ′ ′    ∂ ∂ ∂ ∂ 

y

( ) ( )d f

( )f y∂ ∂

gS
g∂∫G p∂ ∂

 F p =

ω µ ω∞

. 

 
  Step 6. (Walras’ law)  (i) For every , 

 , ( , ) ( )
R

p y d ⋅ ∫
and (ii) 

 
( , ;

( , ;

l
F p y

F p y





. 

 
Proof of Step 6:  (i) is obvious.  To prove (ii), differentiate (i) with respect to  and 

 to get: 
p

 ( ) ( ) ( ) ( ) 0
l

f g f
lS S S R

f p p g p d g y fd f dµ µ µ ω
+

∞ ∞ ∞
′ ′   ∂ ∂ + ∂ ∂ + − =      ∫ ∫ ∫ ∫ , µ ω∞

and  

 ( )( ) ( ) ( ) 0
f g gS S S

d f p g y d g y gd gµ µ∞ ∞
′ ′   + ∂ ∂ + =      ∫ ∫ ∫ . µ∞

−Then note that , , ( ) ( )
l

f
yS R

fd f d a yµ ω µ ω
+

∞ ∞− =∫ ∫ ( )
g

yS
gd g p aµ∞ = ⋅∫

( )p= ∂ ( ) yd g aµ∞ ∞
′  −  

, and ( )f y∂ ∂

, )ya

( ) yd f aµ∞  +  fS
F y∞∂ ∂ = ∫

( ,p y

.  Thus we 

obtain (ii) with derivatives in the matrix evaluated at . 

 
Step 7.  By rewriting results of Step 5 in a matrix form, we can assert that there exists 

 such that ( , , ) ( , )u x K xω ∈ A
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( ) ( )
( ) ( )

0( , )
00

l
F p G p u x y x

F y G y

∞ ∞ ∞

∞ ∞

 ′ ′∂ ∂ ∂ ∂  ∂ ∂    =    ′ ′    ∂ ∂ ∂ ∂ 

. 

Comparing the above result and the result in Step 6 (ii) and using the rank condition, we 

can assert that two vectors  and ( )( ) ,p y∞ ∞′ (  must be proportionate to 

each other.  Hence . 

)( , ) ,0u x y x∞∂ ∂

0y∞ =

Since {
0

( ,0; ) lim ( , ; )y y
G p a p G p y a p∞ ∞ ∞ ∞ ∞ ∞

↓
∂ ∂ = ∂ }y ∂  is well-defined and finite by (f), 

using Step 6 (ii) we obtain 

 ( ,0 : ) 0y lF p a p p∞ ∞ ∞ ∞′ ∂ ∂  = . 

By Step 5 (i), we have that for each supp{ } ,  ( , , )u xω ∈ ( , )xµ∞ A

  

 { } { }( , ; ) ( , ) 0y lF p y a p u x y x∞ ∞ ∞ ∞ ∞′ ′∂ ∂ ∂ ∂ = . 

By (g) and (h), ( ,0) 0lu x x∂ ∂  and ( ,0; )yF p a∞ ∞ ∞∂

( , )xA

p∂  are well-defined and thus we 

have that for each supp{ } , ( , , )u xω ∈ µ∞

 { } { }( ,0; ) ( ,0) 0y lF p a p u x x∞ ∞ ∞ ′ ′∂ ∂ ∂ ∂ = . 

Since the rank of the matrix { ( ,0; )yF p a p∞ ∞ ∞∂ }∂ ( 1l − is , we can assert that )

 [ ]( ,0) ( ,0)u x x u x x p p∞ ∞∂ ∂ ∂ ∂ =  

for each supp{ .  Therefore we can conclude that the limit of strategic 

Lindahl equilibria is a degenerate Walrasian equilibrium.  This concludes the proof.  

( , , )u xω ∈ }( , )xµ∞ A
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4.  Concluding Remarks 
In a private good economy, we have shown in Otani (1996) that strategic behaviors of 

agents result in the indeterminacy of equilibrium allocations, in fact, the dimension of 
indeterminacy would be ( 1  provided that  which would be satisfied in a 

sufficiently large economy.  On the other hand, in an economy with a public good, we have 
shown in our previous paper Otani (2001 b) that the dimension of indeterminacy increases 
by the number of agents positively contributing to the production of the public good.  Thus 
in general the introduction of a public good increases the dimension of indeterminacy. 

)l − T lT ≥

In Otani and Sicilian (1990), for a private goods economy we have shown that under the 
smoothness and regularity conditions, the indeterminacy problem will disappear in the 
limit and the limiting allocation will be that of a true Walrasian equilibrium and efficient.  
Therefore we may say that a true Walrasian equilibrium is robust against strategic 
manipulation in a large economy. 

But we have shown in this paper that, contrary to a private goods economy, equilibrium 
allocations in a public good economy under the Lindahl mechanism do not possess the 
robustness against strategic manipulation in a large economy.  As the economy become 
larger, the larger would be the number of free riding agents and consequently the limiting 
allocation become that of a degenerate Walrasian allocation in which the level of the public 
good production become zero.  Roberts (1976) show that an incentive compatible 
mechanism in a limiting economy entails no production of public goods.  Although he 
recognizes the importance of increasing numbers of agents and examines limiting incentive 
compatibility, his model does not incorporate strategic manipulation of outcomes for a given 
mechanism.  In this paper, we have introduced strategic externalities due to manipulating 
behaviors of agents and examined properties of the set of equilibrium allocations resulting 
under manipulation.  While examining the Groves-Ledyard mechanism in a large economy, 
Muench and Walker (1979, p. 63) provide us with the following interesting statement that 
“if there is a systematic difference between the price mechanism’s performance (with no 
public goods) and the performance of public-goods mechanisms, the difference will only 
appear in large economies.”  In this paper, we have indeed confirmed this insight for a 
Lindahl strategic game. 
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