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Abstract

In this note, a forward demeaning transformation is proposed for the linear feedback model with

explanatory  variables  being  strictly  exogenous  on  count  panel  data.  This  transformation  is

analogous to that  proposed by Arellano and Bover (1995) for  the ordinary dynamic panel data

model.
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1. Introduction

Some consistent estimators are proposed for the linear feedback model (LFM hereafter) advocated

by Blundell et al. (2002) on count panel data (e.g. Blundell et al., 1999 and 2002 and Kitazawa,

2007,  2009a  and  2009b).  In  this  paper,  another  consistent  estimator  is  proposed  by using  the

forward demeaning transformation similar to that proposed by Arellano and Bover (1995) for the

ordinary dynamic panel data model. This estimator is consistent for the case of strictly exogenous

explanatory variables.

The rest of the paper is as follows. Section 2 presents the model, transformation and moment

conditions. Section 3 reports some Monte Carlo evidences for the GMM estimator  (proposed by

Hansen, 1982) using the moment conditions. Section 4 concludes.

2. Model, transformation and moment conditions

The LFM is written as follows:

y
it
= y

i , t−1
exp  x

it


i
v

it , for t=2, , T , (2.1)

where  i  denotes the individual unit with  i=1, , N ,  t  denotes the time period and it is

assumed that T  is fixed and N ∞ . The observable variables y
it  and x

it  are the non-

negative  integer-valued  dependent  variables  and  the  ordinary  real-valued  explanatory variables

respectively, while the unobservable variables 
i  and v

it  are the individual fixed effect and

the disturbance respectively. When x
it  is strictly exogenous, it is assumed that

E [v
it
∣ y

i1
,

i
, v

i

t−1
, x

i

T ]=0 , for t=2, ,T , (2.2)

where  v
i
t−1=v

i1
, , v

i , t−1
  and  x

i
T=x

i1
, , x

iT
 .  For  convenience,  equations (2.1) are

rewritten as
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y
it
= y

i , t−1
u

it , for t=2, , T , (2.3)

u
it
=

i


it
v

it , for t=2, , T , (2.4)

where  
i
=exp

i
  and  

it
=exp  x

it
 .  It  should be noted that  u

it
= y

it
− y

i , t−1  are

plugged into the equations to be hereafter described.

Only for  the  case  where    is  set  to  be  zero,  the  within  group mean  scaling  estimator

(hereafter WG estimator) for   is consistent, in the setting above.1 That is, the WG estimator for

the set of   and   is inconsistent in the setting above, as suggested by Blundell et al. (2002).

This implies that the moment conditions used in the WG estimator are not valid for the specification

(2.1) with (2.2).

From now on, the forward demeaning transformation is derived for the LFM (2.1) with (2.2)

and the moment conditions are proposed using it. From (2.4), the following equations are obtained:

u
it
∗=

i


it
∗v

it
∗

, for t=2, , T , (2.5)

where  u
it
∗=1/ T −t1∑

s=t

T

u
is

, 
it
∗=1/T −t1∑

s=t

T


is

 and v
it
∗=1 /T− t1∑

s=t

T

v
is

.

Solving (2.5) with respect to 
i  gives


i
=u

it

∗−v
it

∗/
it

∗
, for  t=2, , T . (2.6)

Accordingly, from (2.2), (2.4) and (2.6), it follows that

E [ u
it
−

it
u

it

∗−v
it

∗/
it

∗  ∣ y
i1

,
i
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i
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, x

i

T ]=0 , for t=2, ,T . (2.7)

Since  E [
it
/

it

∗ v
it

∗∣ y
i1

,
i
, v

i

t−1
, x

i

T ]=0  (after  using  the  law  of  iterated  expectations),

equations (2.7) result in

E [ u
it
−

it
u

it

∗/
it

∗  ∣ y
i1

,
i
, v

i

t−1
, x

i

T ]=0 , for t=2, ,T . (2.8)

Noting that equation (2.8) for t=T  holds irrespective of any set of values of   and  ,  the

conditional  moment  conditions  (2.8)  give  the  following  T−2T −1/2  and  T−2T
unconditional moment conditions for estimating   and  consistently:

E [ y
is
 u

it
−

it
u

it

∗/
it

∗ ]=0 , for s=1, , t−1 ; t=2, , T −1 , (2.9)

E [ x
is
 u

it
−

it
u

it

∗/
it

∗ ]=0 , for s=1, , T ; t=2, ,T −1 . (2.10)

It is possible that the consistent GMM estimator for the set of    and    in the model (2.1)

with (2.2)  is constructed by using the moment conditions (2.9) and (2.10). This estimator is referred

1 The origins of the WG estimator can be traced to the ordinary and conditional maximum likelihood estimators

assuming the Poisson distribution.  The latter  is  proposed by Hausman et al. (1984).  Blundell et al.  (2002) and

Lancaster (2002) pin down the identity of both estimators and further the formers show that both estimators result in

the WG estimator requiring no distributional assumption (see also Windmeijer, 2008).
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to  as  the  “GMM(fdm)  estimator”  in  this  paper.  The  forward  demeaning  transformation

u
it
−

it
u

it
∗/

it
∗  is analogous to the forward orthogonal deviations transformation proposed by

Arellano and Bover (1995) for the ordinary dynamic panel data model.

Just for the record, Kitazawa (2007) proposes other types of moment conditions associated with

the specification (2.1) with (2.2).

3. Monte Carlo

The small sample performance of the GMM(fdm) estimator is investigated by using some Monte

Carlo experiments. In the experiments, the Level estimator (which ignores the fixed effect), the WG

estimator, the GMM(qd) estimator (which is proposed by Blundell et al., 2002 for the LFM and uses

the quasi-differencing transformation proposed by Chamberlain, 1992 and Wooldridge, 1997) and

the  PSM  (pre-sample mean)  estimator  proposed by Blundell et  al. (1999 and 2002) are used as

controls. An econometric software TSP 4.5 is used (see Hall and Cummins, 2006).

The DGP (data generating process) is as follows:

y
it
~Poisson y

i ,t−1
exp  x

it


i
 ,

y
i ,−TG1

~Poissonexp  x
i ,−TG1


i
 ,

x
it
= x

i ,t−1


i


it ,

x
i ,−TG1

=1/1−
i
1 /1−21/2

i ,−TG1
,


i
~N 0,

2  ; 
it
~N 0,

2 ,

where  t=−TG1, ,−1,0,1, ,T  with  TG  being the number of pre-sample periods to be

generated. In the DGP, values are set to the parameters  ,  ,  ,  , 
2

 and 

2

.

The experiments are carried out with TG=50 , the cross-sectional sizes N=100 , 500  and
1000 ,  the numbers of periods used for the estimation  T=4  and  8  and the number of

replications  NR=1000 .  This  DGP setting is  the  same as  that  of  Blundell  et  al.  (2002)  and

satisfies the assumptions (2.2).

The Monte Carlo results are exhibited in Tables 1-4, where the different types of settings of

parameter values and T  in Blundell et al. (2002) are used. The endemic upward and downward

biases are found in the Level and WG estimators, which are the reflection of the inconsistency,

while  the PSM estimator  behaves well  as  the  pre-sample length  used elongates,  because some

assumptions  needed  for  the  consistent  PSM  estimation  are  satisfied  in  this  DGP setting  (see

Blundell et al., 2002 and Kitazawa, 2007). The instruments used for the GMM estimators in these

tables are curtailed so that for the GMM(qd) estimator only the past dependent variables ( y
it )

dated t−2  and the past explanatory variables ( x
it ) dated t−1  and t−2  are used as the

instruments for the quasi-differenced equations dated t , while for the GMM(fdm) estimator the

past dependent variables dated t−2 and before are not used as the instruments for the forward

demeaned equations dated  t . It can be seen that the performances of the consistent GMM(qd)

estimator (which uses the instruments valid for the case of predetermined explanatory variables) are

poor in small samples, while those of the GMM(fdm) estimator improve dramatically, except for the

rmse for   with N=100  and 500  for T=4  in Table 1.
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4. Conclusion

This  note  proposed  a  forward  demeaning  transformation  for  the  linear  feedback  model  with

explanatory variables being strictly exogenous on count panel data. Some Monte Carlo experiments

showed that the GMM estimator based on the forward demeaning transformation behaves better

than the conventional quasi-differencing GMM estimator in the DGP setting of strictly exogenous

explanatory variables.

References

Arellano, M. and Bover, O. (1995). Another look at the instrumental variable estimation of error-

components models. Journal of Econometrics 68, 29-51.

Blundell, R., Griffith, R. and Van Reenen, J. (1999). Market share, market value and innovation

in a panel of British manufacturing firms. Review of Economic Studies 66, 529-554.

Blundell, R., Griffith, R. and Windmeijer, F. (2002). Individual effects and dynamics in count

data models. Journal of Econometrics 108, 113-131.

Chamberlain,  G.  (1992). Comment:  sequential  moment  restrictions  in  panel  data.  Journal  of

Business and Economic Statistics 10, 20-26.

Hall, B.H. and Cummins, C. (2006). TSP 5.0 user's guide, TSP international.

Hansen,  L.P.  (1982). Large  sample  properties  of  generalized  method  of  moments  estimators.

Econometrica 50, 1029-1054.

Hausman, J.A., Hall, B.H. and Griliches, Z. (1984). Econometric models for count data with an

application to the patent-R&D relationship. Econometrica 52, 909-938.

Kitazawa, Y. (2007). Some additional moment conditions for a dynamic count panel data model.

Kyushu Sangyo University, Faculty of Economics, Discussion Paper, No. 29.

Kitazawa, Y. (2009a). Equidispersion and moment conditions for count panel data model. Kyushu

Sangyo University, Faculty of Economics, Discussion Paper, No. 33.

Kitazawa, Y. (2009b). A negative binomial model and moment conditions for count panel data.

Kyushu Sangyo University, Faculty of Economics, Discussion Paper, No. 34.

Lancaster, T. (2002). Orthogonal parameters and panel data. Review of Economic Studies 69, 647-

666.

Windmeijer, F. (2008). GMM for panel count data models. In:  László Mátyás and Patrick Sevestre

(eds.),  The  econometrics  of  panel  data.  Fundamentals  and  recent  developments  in  theory  and

practice, Springer.

Wooldridge,  J.M.  (1997). Multiplicative  panel  data  models  without  the  strict  exogeneity

assumption. Econometric Theory 13, 667-678.

4



Table 1. Monte Carlo results for LFM, T=4 

(Situation of moderately persistent y
it  and x

it )

=0.5 ; =0.5 ; =0.5 ; =0.1 ; 

2=0.5 ; 


2=0.5

Notes: (1) The number of replications is 1000. (2) The instrument sets for GMM estimators include no time dummies. (3) The

replications where no convergence of the estimations is achieved are eliminated when calculating the values of the Monte Carlo

statistics. Their rates are fairly small. (4) The individuals where the pre-sample means are zero are eliminated in each replication

when estimating the  parameters  of  interest  using the  PSM estimator.  The number  of these  individuals  is  fairly  small  for  each

replication. (5) Although there may be a few replications where the Level and PSM estimators generate the estimates of γ and β with

their absolute values exceeding 10, these replications are eliminated when calculating the values of the Monte Carlo statistics. (6) The

values of the Monte Carlo statistics are obtained using the true values of γ and β as the starting values in the optimization for each

replication. The values of the statistics obtained using the true values are not much different from those obtained using two different

types of the starting values, relative to the values of the statistics.

Table 2. Monte Carlo results for LFM, T=8 

(Situation of moderately persistent y
it  and x

it )

=0.5 ; =0.5 ; =0.5 ; =0.1 ; 

2=0.5 ; 


2=0.5

Notes: See notes in Table 1.

5

N=100 N=500 N=1000

bias bias bias

Level 0.259 0.267 0.275 0.277 0.277 0.278 

0.543 0.642 0.570 0.633 0.555 0.567 

WG -0.454 0.464 -0.446 0.448 -0.447 0.448 

-0.261 0.272 -0.261 0.264 -0.261 0.262 

-0.281 0.415 -0.108 0.166 -0.063 0.114 

-0.246 0.377 -0.126 0.224 -0.075 0.175 

-0.163 0.268 -0.039 0.114 -0.021 0.078 

-0.022 0.516 0.000 0.275 -0.006 0.105 

PSM 0.136 0.158 0.160 0.166 0.162 0.165 

0.198 0.316 0.214 0.243 0.211 0.221 

0.108 0.132 0.128 0.135 0.130 0.134 

0.141 0.227 0.154 0.177 0.153 0.162 

0.048 0.092 0.063 0.075 0.066 0.072 

0.062 0.152 0.065 0.088 0.066 0.076 

0.023 0.085 0.036 0.053 0.038 0.047 

0.036 0.135 0.035 0.064 0.036 0.050 

rmse rmse rmse

γ

β

γ

β

GMM(qd) γ

β

GMM(fdm) γ

β

γ(4)

β(4)

γ(8)

β(8)

γ(25)

β(25)

γ(50)

β(50)

N=100 N=500 N=1000

bias bias bias

Level 0.263 0.268 0.275 0.276 0.277 0.277 

0.538 0.592 0.552 0.565 0.554 0.560 

WG -0.189 0.197 -0.183 0.185 -0.184 0.185 

-0.128 0.142 -0.126 0.129 -0.127 0.128 

-0.237 0.273 -0.075 0.094 -0.043 0.061 

-0.238 0.270 -0.104 0.131 -0.059 0.088 

-0.085 0.126 -0.026 0.054 -0.016 0.035 

-0.057 0.117 -0.017 0.059 -0.010 0.040 

PSM 0.145 0.155 0.163 0.166 0.164 0.166 

0.192 0.229 0.212 0.221 0.213 0.219 

0.116 0.127 0.132 0.135 0.133 0.135 

0.140 0.174 0.155 0.164 0.157 0.162 

0.058 0.077 0.068 0.073 0.069 0.072 

0.061 0.098 0.068 0.078 0.069 0.075 

0.029 0.059 0.039 0.047 0.040 0.044 

0.030 0.076 0.037 0.049 0.038 0.045 

rmse rmse rmse

γ

β

γ

β

GMM(qd) γ

β

GMM(fdm) γ

β

γ(4)

β(4)

γ(8)

β(8)

γ(25)

β(25)

γ(50)

β(50)



Table 3. Monte Carlo results for LFM, T=8 

(Situation of considerably persistent y
it  and x

it )

=0.7 ; =1 ; =0.9 ; =0 ; 

2=0.5 ; 


2=0.05

Notes: See notes in Table 1.

Table 4. Monte Carlo results for LFM, T=8 

(Situation of considerably persistent y
it  and extremely persistent x

it )

=0.7 ; =1 ; =0.95 ; =0 ; 

2=0.5 ; 


2=0.015

Notes: See notes in Table 1.
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N=100 N=500 N=1000

bias bias bias

Level 0.170 0.174 0.180 0.181 0.183 0.183 

0.421 0.669 0.425 0.471 0.428 0.455 

WG -0.251 0.258 -0.245 0.246 -0.244 0.245 

-0.369 0.403 -0.367 0.373 -0.367 0.371 

-0.361 0.415 -0.109 0.143 -0.060 0.084 

-0.696 0.880 -0.412 0.595 -0.272 0.406 

-0.146 0.185 -0.057 0.082 -0.033 0.055 

-0.210 0.409 -0.105 0.206 -0.066 0.148 

PSM 0.115 0.125 0.133 0.136 0.137 0.139 

0.046 0.460 0.070 0.289 0.066 0.167 

0.105 0.115 0.122 0.125 0.126 0.127 

0.011 0.360 0.025 0.165 0.024 0.119 

0.076 0.089 0.091 0.094 0.094 0.096 

-0.017 0.206 -0.004 0.100 -0.004 0.074 

0.056 0.073 0.069 0.073 0.072 0.074 

-0.009 0.182 -0.001 0.081 -0.001 0.060 

rmse rmse rmse

γ

β

γ

β

GMM(qd) γ

β

GMM(fdm) γ

β

γ(4)

β(4)

γ(8)

β(8)

γ(25)

β(25)

γ(50)

β(50)

N=100 N=500 N=1000

bias bias bias

Level 0.175 0.178 0.183 0.184 0.184 0.184 

0.244 0.524 0.250 0.322 0.234 0.272 

WG -0.274 0.280 -0.272 0.273 -0.271 0.272 

-0.367 0.469 -0.360 0.380 -0.363 0.373 

-0.449 0.511 -0.138 0.189 -0.070 0.108 

-0.746 1.378 -0.588 1.148 -0.379 0.829 

-0.201 0.243 -0.087 0.116 -0.056 0.079 

-0.262 0.498 -0.131 0.271 -0.100 0.214 

PSM 0.112 0.122 0.128 0.131 0.131 0.132 

-0.205 0.406 -0.185 0.250 -0.196 0.223 

0.101 0.111 0.116 0.119 0.118 0.119 

-0.248 0.385 -0.231 0.270 -0.240 0.258 

0.074 0.087 0.087 0.091 0.089 0.091 

-0.236 0.332 -0.224 0.248 -0.233 0.245 

0.058 0.073 0.070 0.074 0.071 0.073 

-0.173 0.277 -0.165 0.190 -0.173 0.184 

rmse rmse rmse

γ

β

γ

β

GMM(qd) γ

β

GMM(fdm) γ

β

γ(4)

β(4)

γ(8)

β(8)

γ(25)

β(25)

γ(50)

β(50)


