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Abstract 

This paper describes a lucid theoretical ground for the linear feedback model proposed 

by Blundell et al. (2002) and further proposes the indicator on the initial knowledge 

storage in the framework of the linear feedback model. The values of the indicator are 

calculated with the estimation results conducted by Blundell et al. (2002). Further, the 

GMM estimations of the linear feedback model are conducted by using the stationarity 

moment conditions customized to needs of count panel data, in order to calculate the 

values of the indicator. 
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1. Introduction 

Blundell et al. (2002) propose the linear feedback model (hereafter, LFM) with the aim 

of incorporating dynamics into the patent generating equation (which is of the count 
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panel data specification).1 The treatment of the lagged count variables in the LFM 

makes us dexterously avoid the problems associated with the colossal-integer-valued 

and zero-valued dependent variables.2 Blundell et al. (2002) also give a pioneering 

economic interpretation for the LFM. However, according to their interpretation, the 

infinite time span is assumed (which might be supposedly tolerable if we use the 

pre-sample mean (PSM) estimator proposed by Blundell et al. (1999, 2002) to be 

hereafter described) and it is felt that the assumption and interpretation for the 

disturbance are nebulously described.3 The former has a conflict with the specification 

in short-run time span in that the model may change in long-run span, while as for the 

latter it is meaningful in terms of consolidating the theoretical ground of the LFM to 

make the haziness of the assumption and interpretation clear. To circumvent these 

problems, we propose a new theoretical ground for the LFM, acceding to their 

interpretation. In addition, we propose the indicator roughly measuring how large the 

initial knowledge storage procured beforehand is in comparison with the knowledge 

production level. We can calculate this indicator by using the persistence parameter in 

the LFM, which we estimate employing panel data set with span being short. More 

specifically, if we just obtain the estimate of the persistence parameter using short 
                                                   
1 The LFM grows out of the integer-valued autoregressive model for the time series 

Poisson count model developed by Al-Osh and Alzaid (1987), McKenzie (1988), Alzaid 
and Al-Osh (1987), and Gin-Guan and Yuan (1991). Not to mention Blundell et al. 
(2002), the estimations of the LFM are conducted by Cincera (1997), Prabhu et al. 
(2005), Salomon and Shaver (2005), Uchida and Cook (2007), Abdelmoula and Bresson 
(2008), Gurmu and Pérez-Sebastián (2008), Lucena (2011), Blume-Kohout (2012), and 
Gallié and Legros (2012) on the patents and/or innovations production. In addition, 
Damijan et al. (2007) applies the LFM to the analysis about the decision on number of 
foreign affiliates by the manufacturing firms. 

2 The alternative specifications avoiding the problems are proposed by Crépon and 
Duguet (1997) and Blundell et al. (1999). 

3 Looking at Blundell et al. (2002), Abdelmoula and Bresson (2008), and Windmeijer 
(2008), the relationship between the disturbance it  in the patent production and the 
disturbance itu  in the LFM seems to be hazy in light of their assumptions. 



 

  3  

panel, we can calculate the rate of the initial knowledge storage to the knowledge 

production level in the stationary state. The values of the indicator are calculated by 

using the estimation results by Blundell et al. (2002), which are obtained by using the 

patent-R&D panel data with respect to US firms. Further, the values of the indicator 

are calculated by using the GMM estimation results incorporating not only the 

conventional moment conditions proposed by Chamberlain (1992) and Wooldridge 

(1997) but also the moment condition newly developed by Kitazawa (2007). 

The rest of the paper is as follows. Section 2 describes the new theoretical ground 

for the linear feedback model in the framework of time series specification. Section 3 

presents the new indicator. Section 4 extends the theoretical ground to the framework of 

panel data specification and calculates the indicator by using the estimation results by 

Blundell et al. (2002). Section 5 calculates the indicator after estimating the patent 

generating function, where the GMM estimations are conducted incorporating the 

conventional and new-look moment conditions for an US patents-R&D panel dataset. 

Section 6 concludes. 

 

2. New theoretical ground for the LFM 

In this section, we propose an accomplished theoretical ground for the LFM, which 

constructs the LFM more compatibly than the economic interpretation by Blundell et al. 

(2002). The model specification becomes possible in the short-run time span by 

incorporating the notion of the initial knowledge storage to be described, while the new 

interpretation on the disturbances is presented, which will explain their role without 

contradiction. In this section, the LFM is presented in the time series specification for 

simplicity. The extension to panel data specification is presented in section 4. 
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We consider that the firm’s patents at time t  ( ty ) for Tt ,,1  are generated by 

the sum of the deterministic knowledge stock of the firm at time t  ( tF ), the contingent 

knowledge stock of the firm at time t  ( tV ) and the initial knowledge storage 

depreciated at time t  ( tS ):  

 tttt SVFy  .      (2.1) 

The deterministic knowledge stock at time t  is represented as the following 

distributed lag of the current and past depreciated deterministic knowledge production 

functions:  

 
1

0
)()1( ),,,()1(

t
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stKst

s
ft CXXfF ,   (2.2) 

where ),,,( )()1( CXXf stKst  is the knowledge production function at time st  

for 1,,0 ts , with the given K  time-varying positive-valued inputs being 

tKt XX )()1( ,,  and the time-unvarying positive-valued input being C , and the 

depreciation rate for the deterministic knowledge is f  . 
 

The contingent knowledge stock at time t  is represented as the following 

distributed lag of the current and past depreciated incidental noises: 
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where stv  is the incidental noise at time st  for 1,,0 ts  and the 

depreciation rate for the incidental noise is v . The incidental noise is positive if the 

incident is windfall, while negative if the incident is mischance, and its mean is 

postulated to be zero. We regard the incidental noise as being a stochastic variable and 
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interpret it as being a kind of knowledge.4 Allowing for the uncorrelated structures 

between 0I  and tv  and between C  and tv , the serially uncorrelated disturbances, 

and the predetermined inputs, we assume that 

 0],,,,,|E[ )()1(
1

0
t
K

tt
t XXvCIv ,    (2.4) 

where ),,( 10
1

t
t vvv  with 0v  being empty and ),,( )(1)()( tkk

t
k XXX  for 

Kk ,,1 .5 

The initial knowledge storage depreciated at time t  is represented as follows: 

 0
1)1( IS t

It  ,      (2.5) 

where 0I  is the initial knowledge storage and I  is the depreciation rate for the 

initial knowledge storage. We define 0I  as the knowledge storage before the period 

subject to the study on the patent production. We consider that the firm can garner the 

initial knowledge storage by means of some sort of swift technology transfer as well as 

by persevering in accumulating the knowledge stock over many years. 

If all depreciation rates are same: 

Ivf  ,      (2.6) 

equation (2.1) is written as 

                                                   
4 We define that the negative knowledge impedes the patent production, while the 

positive knowledge promotes it. We consider that if the negative knowledge is endowed 
for the firm, the noise is negative, while if the positive knowledge is endowed for the 
firm, the noise is positive. We consider that the negative knowledge is not 
deterministically achieved. 

5 The implication of the predetermined inputs is that the incidental noise at time t  
is uncorrelated with the transformations of the inputs up to time t , but correlated with 
those after time t . An illustration of the validity of assuming the predetermined inputs 
is that the increase of the patents production due to the windfall incident would provide 
impetus for the R&D in future, which would results in the increase of the R&D 
expenditures. 
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Accordingly, subtracting (2.7) dated 1t  multiplied by 1  from (2.7) dated t , we 

can obtain the following dynamic patent production function: 

 ttKttt vCXXfyy ),,,()1( )()1(1  ,   (2.8) 

Further, specifying the knowledge production function dated t  as the following 

Cobb-Douglas type production function: 

 
K

k
tktKt
kXCCXXf

1
)()()1(

)(),,,( ,    (2.9) 

where )(k  is the parameter corresponding to the input tkX )(  , and letting 1 , 

tktk Xx )()( log  and Cc log , the LFM is generated: 

 t

K

k
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1
)()(1 exp

 
,    (2.10) 

where it follows from (2.4) that 

 0],,,,,|E[ )()1(
1

1
t
K

tt
t xxvcyv ,    (2.11) 

with ),,( )(1)()( tkk
t
k xxx  for Kk ,,1 , by noting that the natural logarithm 

function is bijective for RR  with R  and R  being the positive real numbers 

and the real numbers respectively. 

An implication based on this theoretical ground is that once the firm procures a 

massive amount of the initial knowledge storage by some sort of technology transfer, the 

firm can generate the technological innovations as typified by the patents in abundance, 

even if the knowledge production level of the firm is meager, as is seen from equation 
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(2.7).6 This possibility is intensified if the depreciation rate is small. Further, since the 

input factors are assumed to be predetermined as is seen from (2.4), we can have a 

scenario in which the innovations to be generated affect the input factors and therefore 

the firm could generate the innovations successively. 

 

3. New indicator 

We assume that the expected level of the knowledge production function in the 

stationary state is 

 HCXXf tKt )],,,(E[ )()1( ,     (3.1) 

where stochastic factors can be took into consideration in the inputs tKt XX )()1( ,, . 

Then, the expected number of patents issued in the stationary state is obtained from the 

dynamic patent production function (2.8) as follows: 

 Hyt )/1(]E[ .      (3.2) 

Taking expectation of (2.7) and allowing for (3.1) and (3.2), it follows that 

 Et
t

s

s IHH 0
1

1

0
)1()1()/1(  ,    (3.3) 

where EI0  is the mean of the probability distribution that underlies the (realized) 

initial knowledge storage 0I  (i.e. ]E[ 00 II E  implying what we call the background 

                                                   
6 A typical example is the furious advancement of rocket technologies by the US and 

USSR after World War II. They raced to develop new rocket technologies each other 
after expropriating German rocket technologies and immigrating German human 
resources involved in the technologies into their lands. Their achievement of immense 
amount of innovations in the field of the rocket technology can be said to be due to the 
acquirement of a volume of exquisite German technologies as their initial knowledge 
storages. In the empirical literature, Park and Lee (2006) find that the technological 
catching-up is more likely to happen in the technological classes with more initial stock 
of knowledge. 
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measured by the mean, that gives birth to 0I ). 

Introducing /))1(1()1(1
0

tt
s

s  for (3.3), we can write the rate of the 

initial knowledge storage to the knowledge production level in the stationary state, as a 

function of the depreciation rate. That is, 

 1)/1(/0 HI E  .      (3.4) 

The index  roughly measures how large the initial knowledge storage is, compared to 

the current knowledge production level. We can see from equation (3.4) that the lower 

depreciation rate results in the larger initial knowledge storage relative to the expected 

knowledge production level for each period. 

Equation (3.4) is also written as follows by using 1 : 

 1))1/(1(  .      (3.5) 

Judging from equation (3.5), the larger persistence of the patent production (the larger 

) implies that the patents are generated from the larger initial knowledge storage 

relative to the expected knowledge production level for each period, if the count 

variables of the patents are stationary. In addition, the relationship between  and  

is displayed in Figure 1, which shows that the larger  is also associated with the 

steeper rise of . Simply stated, the higher persistence of patent production is raised 

by the considerably larger size of the initial knowledge storage relative to the 

knowledge production level, when the number of patents ty  is in the stationary state. 

 

4. Extension to panel data 

In panel data specification, the variables ty , tF , tV , tS , tkx )(  for Kk ,,1 , tv , 

and 0I  in previous sections are replaced by  ity , itF , itV , itS , itkx )(  for 



 

  9  

Kk ,,1 , itv , and 0iI  respectively, where index i  denotes the firm i  with 

Ni ,,1  and N  being number of firms. Further, C  and c  are replaced by iC  

and ic , both of which control for the individual heterogeneity. Using the replaced 

variables, the following panel data version LFM is obtained instead of (2.10): 

 it

K

k
itkkitiit vxcyy

1
)()(1, exp , for Tt ,,2 , (4.1) 

where the parameters in the Cobb-Douglas production function )(k  for Kk ,,1  

and the persistence parameter  (and therefore the depreciation rate ) are common 

among all firms and time periods and ic  is regarded as the fixed effect. Accordingly, 

the assumption (2.11) is replaced by 

0],,,,,|E[ )()1(
1

1
t

iK
t

i
t
iiiit xxvcyv ,  for Tt ,,2 , (4.2) 

where ),,( 1,1
1

tii
t
i vvv  with 0iv  being empty and ),,( )(1)()( itkik

t
ik xxx  for 

Kk ,,1 . In addition to the replacement of variables tailored to the panel data 

specification as is described above, the variable H  and EI0  in previous section is 

replaced by iH  and E
iI 0 . In this panel data specification,  (i.e. the rate of the initial 

knowledge storage to the knowledge production level in the stationary state) is common 

among all firms, as is seen from (3.4). 

 The panel data that we often confront is of specification with number of firms N  

being large and time dimension T  being small (where asymptotics rely on N  instead 

of T ) Since regarding the variables as being (approximately) stationary in short-run 

span is tolerably reasonable, we can say that the calculation of  after analyzing the 

panel data is fairly meaningful. 



 

  10  

We calculate  by using the estimation results by Blundell et al. (2002). The 

results are obtained by using the patent-R&D panel data of Hall et al. (1986) with 

respect to 407 US firms from 1972 to 1979. Their specification employs the R&D 

expenditure as the only input factor, which corresponds to equation (4.1) with 1K  

and itx )1(  being the natural logarithm of the R&D expenditure at time t  for firm i . 

In this case, we adjust the expression, by setting itit xx )1(  (and accordingly

itit XX )1( ) and )1( . Finally, the specifications (4.1) and (4.2) reduce to 

 itititiit vxcyy exp1, ,  for Tt ,,2 , (4.3) 

0],,,|E[ 1
1

t
i

t
iiiit xvcyv ,   for Tt ,,2 , (4.4) 

where ),,( 1 iti
t
i xxx . 

Table 1 displays the estimation results by Blundell et al. (2002) and the values of 

 calculated from their results (i.e. the estimated values of ). Some Monte Carlo 

experiments conducted by Blundell et al. (2002) and Kitazawa (2007) show that the 

PSM (pre-sample mean) estimator proposed by Blundell et al. (1999, 2002) has some 

preferable small sample properties if some assumptions are satisfied, while the Level 

and WG (within group) mean scaling estimators are biased upward and downward 

respectively.7 The values of  calculated by using the PSM estimate is 5.289, while 

those calculated by using the Level and WG estimates are 8.174 and 0.704. According to 

the PSM estimate, we can say that in the US firms, the background of the initial 

                                                   
7 The PSM estimator, whose origin can be traced to Blundell et al. (1995), requires 

the long pre-sample histories of dependent variables for its consistency. However, the 
Monte Carlo evidences exhibit that the small sample performance of the PSM estimator 
is preferable even if the number of pre-sample periods is small. The Level and WG 
estimators are inconsistent for this specification. The WG estimator is equivalent to the 
Poisson conditional maximum likelihood estimator proposed by Hausman et al. (1984). 
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knowledge storage procured before the estimation period is about five times the size of 

the expected knowledge production level in each year in the estimation period. It seems 

that the values of  calculated by the Level and WG estimates highlight the upward 

and downward biases of their respective estimators. 

 

5. Empirical analysis using GMM 

Further, we estimate the LFM (4.3) with (4.4) and then calculate the values of  based 

on the estimation results for another count panel data set, where the GMM estimators 

proposed by Hansen (1982) are used incorporating the new moment conditions proposed 

by Kitazawa (2007). The dataset is the US one on numbers of patents and R&D 

expenditures, which is used in Hall et al. (1986) and is composed of 346 firms covering 

the period 1970-79.8 The number of firms and the covered period are different from 

those used in Blundell et al. (2002). 

Under the situation where number of firms is large but time dimension is small, the 

GMM is very useful for obtaining the consistent estimates of the parameters of interest 

when the explanatory variables are considered to be predetermined for panel data 

specification with fixed effects.9 We can construct the moment conditions used for the 

GMM estimations, based on the assumptions (4.4). 

The three types of moment conditions are used for the GMM estimations. The first 

                                                   
8 The following site displays the zipped file containing the dataset as of December 

2012: 
http://emlab.berkeley.edu/users/bhhall/pub/data/readme.htm 
After unzipping the “patrhgh.zip” file, we can find the “patr7079.dat” file. 
9 An alternative to the GMM estimator is the empirical likelihood (EL) estimator 

proposed by Owen (1988, 1990, 1991, 2001) and developed by Qin and Lawless (1994), 
which is expected to have the potential of improving the poor small sample behavior 
controversial in using the GMM estimator. Hsueh and Lee (2012) utilize the EL 
estimator to estimate the patent-R&D relationship by using the second dataset of Hall 
et al. (1986), which is used in the analysis in this section. 
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is the conventional moment conditions for count panel data model: 

0)])())(exp((E[ 2,1,1, tititiititis yyyyxy , 

   for 2,,1 ts ; Tt ,,3 ,  (5.1) 

0)])())(exp((E[ 2,1,1, tititiititis yyyyxx , 

   for 1,,1 ts ; Tt ,,3 ,  (5.2) 

both of which are the moment conditions based on the quasi-differencing 

transformation by Chamberlain (1992) and Wooldridge (1997).10 The second is the 

additional moment conditions nonlinear with respect to : 

0)]()exp())())(exp((E[ 1,3,2,2,1,1, tiitittititititi yyxyyyyx , 

for Tt ,,4 .  (5.3) 

The third is the stationarity moment conditions 

0)]()exp(E[ 1,1, tiititti yyxy ,  for Tt ,,3 , (5.4) 

0)]()exp(E[ 1,tiititit yyxx ,  for Tt ,,2 , (5.5) 

both of which are available when the moment generating function for itx  is stationary 

and ity  is mean-stationary. The second and third types of moment conditions are 

proposed by Kitazawa (2007). 11  The conventional, additional nonlinear, and 

                                                   
10 The moment conditions (5.1) are an extension by Blundell et al. (2002), which are 

in the framework of the moment conditions based on the quasi-differencing 
transformation. In the empirical analyses other than those for the LFM, the moment 
conditions based on the quasi-differencing transformation are also used: Montalvo 
(1997), Kim and Marschke (2005), and Agarwal et al. (2009), etc. 

11 One type of moment conditions analogous to (5.3) is proposed by Windmeijer 
(2000) for the case of endogenous explanatory variables, while another type is firstly 
proposed by Crépon and Duguet (1997) and its variant is subsequently proposed by 
Kitazawa (2007) for the case of strictly exogenous explanatory variables. In addition, it 
should be noted that the explanatory variables need to have both negative and positive 
values when using the moment conditions (5.3), (5.4), and (5.5) (see Wooldridge, 1997 
and Windmeijer, 2000). 
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stationarity moment conditions correspond to the standard moment conditions proposed 

by Holtz-Eakin et al. (1988) and Arellano and Bond (1991), the additional nonlinear 

moment conditions proposed by Ahn (1990) and Ahn and Schmidt (1995), and the 

stationarity moment conditions proposed by Arellano and Bover (1995) and discussed by 

Ahn and Schmidt (1995) and Blundell and Bond (1998) in the context of the ordinary 

dynamic panel data model, respectively.12 

The three GMM estimators using the moment conditions above are investigated for 

the US dataset: the GMM(qd) estimator using the conventional moment conditions (5.1) 

and (5.2), the GMM(pr) estimator using the additional nonlinear moment conditions 

(5.3) together with (5.1) and (5.2), and the GMM(sa) estimator using the stationarity 

moment conditions (5.4) and (5.5) together with (5.1) and (5.2). Some Monte Carlo 

experiments carried out by Kitazawa (2007) show that small sample performances of 

the GMM(pr) and GMM(sa) estimators are superior to that of the GMM(qd) estimator. 

We show the estimation results for the span 1972-77 in the dataset. Some 

descriptive statistics in this span are shown in Table 2. We can say that the basic 

statistics are not totally different from those used in Blundell et al. (2002). The 

estimation results are shown in Table 3. Allowing for the upward and downward biases 

pertaining to the Level and WG estimates respectively, we could consider that the 

desirable estimates for  and  lie between 0.914 and 0.325 and between 0.686 and 

0.345 respectively. Although the lm1, lm2, and Sargan test statistics say that the 

moment conditions originating the three types of GMM estimates are all valid, only the 

GMM(sa) estimates (0.603, 0.617) stay within these realms. We may say that the 

                                                   
12 Kitazawa (2007) derives these moment conditions from the covariance structure 

for disturbances in the LFM, expanding the idea of constructing the efficient sets of 
moment conditions proposed by Ahn (1990) and Ahn and Schmidt (1995) in the context 
of the dynamic panel data model. 
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GMM(qd) estimates are admittedly afflicted with the small sample downward bias and 

the GMM(pr) estimates presumably suffer from some sort of small sample bias. The 

GMM(sa) estimates are comparatively close to the PSM estimates obtained by Blundell 

et al. (2002), although the span and the number of firms are different. However, the 

value of  calculated by using the GMM(sa) estimate of  is 1.518, which is much 

smaller than that calculated by using the PSM estimate. 

 

6. Conclusion 

In this paper, we proposed the new theoretical ground for the linear feedback model, 

which is said to be designed more adroitly than that described by Blundell et al. (2002) 

despite inheriting their framework. In addition, we proposed the indicator roughly 

measuring the ratio of the initial knowledge storage to the knowledge production level 

for each period. Then, we obtained the values of the indicator for the US firms by using 

the preferable estimation result by Blundell et al. (2002) and by using the GMM 

estimation result incorporating the stationarity moment conditions proposed by 

Kitazawa (2007). 
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Figure 1 

Relationship between  and  

 

Note: The graph represents the relationship between the background of initial 

knowledge storage measured by the mean relative to the expected knowledge 

production level for each period and the persistence parameter in the LFM, which is 

equation (3.5). 
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Table 1 

Replication of the estimation results by Blundell et al. (2002) and calculation results of 

 

 

Notes: (1) Replication is conducted from Table 5 in Blundell et al. (2002). (2) The seven 

years before the estimation period are used for the calculation of the pre-sample mean. 

(3) The results by the GMM estimators based on the quasi-differenced transformation 

proposed by Chamberlain (1992) and Wooldridge (1997) are ruled out, since their 

estimates of  are negative suffering from poor small sample performances 

characteristic of the GMM estimators. 

  

LEVEL WG PSM
γ 0.891 0.413 0.841
β 0.898 0.342 0.506

ω 8.174 0.704 5.289
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Table 2 

Descriptive statistics for the data of patents and R&D 

 

Notes: ln R&D is transformed in deviation from the overall mean (see Windmeijer, 

2000). 

  

Number of firms 346 346
span 1972-77 1972-77

Patents ln R&D
Mean 36.637 0.000
S.D. 75.054 1.960
Minimum 0 -5.062
Maximum 595 5.852
Median 6 -0.271
Proportion of zeros 0.173
Proportion of positives 0.455
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Table 3 

Results for the linear feedback model 

N=346 T=6 (span 1972-77) 

 
Notes: (1) The GMM estimators use the lagged dependent variables dated 2t  and 

before and the lagged explanatory variables dated 1t  and before as the instruments 

for the quasi-differenced equations dated t  in the span. (2) No time dummy is included. 

(3) Sargan is the test statistic of overidentifying restrictions and df is its degree of 

freedom. (4) The lm1 and lm2 are the test statistics of first-order and second-order 

serial correlations in quasi-differenced residuals. (5) Results by the two-step estimation 

are shown. It may be that the t-values for the GMM estimates are a little biased 

upwards, in light of the Monte Carlo results carried out by Windmeijer (2008) and 

Kitazawa (2007). 

γ β Sargan (df) lm1 ω
t value t value p value lm2

Level 0.914 0.686 10.588
30.765 13.139

WG 0.325 0.345 0.481
1.177 0.157

GMM(qd) 0.373 0.197 24.60 (22) -4.594 0.596
5.300 1.029 0.316 1.237

GMM(pr) 0.388 1.013 24.81 (25) -4.680 0.635
7.882 5.213 0.473 1.443

GMM(sa) 0.603 0.617 38.35 (31) -5.578 1.518
13.068 9.593 0.170 1.509


