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1 Introduction

Most dynamic general equilibrium macroeconomic theory relies heavily on the representative-

agent model. The simple model yields many predictions, but the assumption that

an economy is inhabited by a single type of consumer highly simplify some general

characterization of key elements. Hence, it would be a step forward to re-examine

the existing macroeconomic topics in the finite-agent models.

We firstly assume that a finite number of infinitely lived agents have an identical

rate of time preference.1 Thus, in our model a continuum of steady states exists

in the sense that the long-run distribution of capital stocks depends on the initial

distribution of capital stocks, implying that steady-state analysis is not elementary

and we require a full dynamic analysis including the initial economy. In that time,

the model lacks simplicity and tractability.2 Next, we assume that each agent has

different elasticities of intertemporal substitution (EIS), which offers a strikingly

different prediction with respect to the dynamic motion of private consumption from

the finite-agent models with the identical EIS.3 In sum, the homogeneity of EIS allows

us to reduce our model to the representative-agent model; however, introducing

the heterogeneous EIS disturbs its aggregation, that is, the economy has various

paths of private consumption. Concretely, a higher value of EIS leads to a steeper

consumption path, which allows the economy to converge toward the steady-state

1For instance, Becker (1980) assume that agents were allowed to differ in their rates of time

preference, showing that asymptotically all the wealth of the economy is held by the most patient

agent.

2To facilitate departures from these outcomes obtained in the many-agent Ramsey model, a con-

siderable number of researchers additionally provided assumptions on the preferences of consumers,

such as endogenous time preference (Epstein, 1987) and wealth preference (Futagami and Shibata,

1998), nonlinear progressive taxation (Sarte, 1997 and Li and Sarte, 2004, Mino and Nakamoto,

2012) and the incomplete market.

3By a recent development in the behavioral economics as well as the experimental economics, a

lot of studies support the heterogeneity of risk aversion parameters among people, that is, there is

the heterogeneity of EIS. For instance, see Holt and Laury (2002).
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equilibrium in a higher speed; however, if an agent has a lower value of EIS, which

generates a flatter consumption path, the speed of convergence is slower. Then, it

can be expected that the speed of convergence in the finite-agent model with the

heterogeneous EIS is deviated from that in the representative-agent model.

In this article, assuming that EIS is heterogeneous, we characterize the steady-

state equilibrium in a tractable way where the steady-state equilibrium depends on

the initial conditions of capital stock and EIS unlike the representative-agent model.

Using a more general set-up based on the finite agents with the heterogeneous EIS,

we revisit the speed of convergence in a one-sector growth model.

Our primary interest is to confirm the sensitivity of heterogeneous EIS as well

as the initial condition of capital stock. First, it has been known that the speed

of convergence is highly sensitive to EIS in the representative-agent model (e.g.,

Turnovsky (2002) and Nakamoto (2009)). Based on the existing studies, we are

interested in whether such a high sensitivity is also kept in our model. Because there

are a lot of agents whose consumption paths are not unique, we do not make clear

if the speed of convergence is similarly sensitive to an increase in EIS of an agent,

not the average level of EIS as in the representative-agent model. More importantly,

we wonder if an increase in the average level of EIS always makes the speeds of

convergence increased in the first place. An increase in EIS always makes the speeds

of convergence increased in the representative-agent model; however, because the

finite agent setting allows EIS to affect the steady-state equilibrium, the relationship

between convergence speeds and EIS would be complicated.

Next, we are interested in the initial position of capital stock. The theoretical

analysis of convergence in the representative-agent model is overly restrictive for the

initial capital stock because not only the dynamic behavior but also the steady-state

characterization are determined independently of the initial capital stock, conclud-

ing that a change in the initial level of capital stock does not have any impacts on

the speeds of convergence. Alternatively, in our model the initial position of capital

stock affects the steady-state characterization, thereby changing the speeds of con-

vergence. Then, we examine the speeds of convergence related to the initial state
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of the economy, that is, the degree of inequality at the initial economy (unequal or

equal wealth), the sign of consumption growth rate (positive or negative rate) and

the distance from the initial economy to the steady state (extremely near or not).

This paper is organized as follows. Section 2 gives the basic framework and char-

acterize the steady-state equilibrium. Section 3 shows the convergence speed in our

model and confirms the deviation from the convergence speed in the representative-

agent model. Section 4 provides the numerical examples. In Section 5, to extend to

more general frameworks, we incorporate the Stone-Geary type of utility function

and the endogenous labor supply. Section 6 concludes.

2 Model

We describe our model of a closed economy where time is taken in continuous in-

tervals. The stock of capital is the only net asset held by agents. There are many

finite lived agents indexed by i = 1, 2, .., n, where we assume that the initial holdings

of capital stock are different across agents. We assume that the population in the

whole economy is constant over time.

The representative firm produces a single good according to a constant-returns-to-

scale technology expressed by Y = F (K,L) where the production function satisfies

neoclassical properties. Here, Y, K and L denote the total output, capital and

employment of labor, respectively.4 The wage rate, W , and the return to capital, R,

are determined by the marginal products of capital and labor:

W (K,L) = FL(K,L), R(K,L) = FK(K,L). (1)

Denoting by ki, ci and li the levels of capital stock, private consumption and an

amount of labor by an agent i, we assume that she faces a flow budget constraint,

such that

k̇i = (R− δ)ki +Wli − ci i = 1, 2, .., n, (2)

4We omit time variable t as long as it does not invite confusion.
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where δ is a constant rate of depreciation and the initial holding of capital k0
i is

exogenously given. Assuming that the commodity market is competitive, summing

(2) among all agents yields the output market in equilibrium:

Y = K̇ + δK + C, (3)

where C =
∑n

i=1 ci denotes aggregate consumption.

The full-employment conditions are given in:

K =
n∑

i=1

ki, L =
n∑

i=1

li. (4)

2.1 Set up

To keep with our focus on the role of heterogeneous EIS (elasticities of intertemporal

substitution) in determining the speeds of convergence, we simplify the consumer’s

consumption-leisure choice in the basic case, which provides the assumption that

each consumer inelastically supplies an identical labor service, and therefore L = 1.

Because of this assumption, the production technology can be represented by a total

output function that depends on a variable capital input with labor treated as a fixed

factor, Y = F (K). As a result, cross-sectional differences in income are caused by

the differences in capital stock.

The evaluation of life-time utility depends only on the consumption profiles as

follows:

U i =

∫ +∞

0

e−ρt c
1−βi

i

1− βi

dt, ρ > 0, βi > 0 i = 1, 2, .., n, (5)

where ρ and βi are the preference parameters. In particular, we assume that the

rate of time preference among agents, ρ is identical among agents, and that EMU

(elasticities of marginal utility), βi does not take an identical value among agents.

Each agent maximizes U i subject to (2), a constant level of labor supply l̄ ≡

l̄i (i = 1, 2, ..., n) and the initial holding of capital, k0
i . Letting the implicit price of

capital ki be qi, the optimization conditions include

c−βi

i = qi, i = 1, 2, .., n, (6a)

5



q̇i
qi

= ρ+ δ −R, i = 1, 2, .., n, (6b)

along with the transversality condition, limt→∞ e−ρtqiki = 0.

The right-hand side of (6b) is the same among agents, implying that q̇1
q1

= q̇2
q2

=

... = q̇n
qn

for all t ≥ 0. Since Ωij ≡ qi
qj

(i, j = 1, 2, 3, ..., n) where Ωij is a positive

parameter, from (6a) we can show that

Ωij =
c−βi

i

c
−βj

j

, i, j = 1, 2, 3..., n, i ̸= j. (7)

Because Ωij (i, j = 1, 2, 3, ..., n) (i ̸= j) are undetermined, our model needs to

specify trajectory starting from a specific set of initial capital stocks unlike the

representative-agent model.

From (1), (6a) and (6b), we derive the well-known Euler equation:

ċi
ci

=
R− δ − ρ

βi

, i = 1, 2, ..., n. (8)

We pay attention to the following two points. First, the agent has the different EIS

1
βi
. Therefore, the individual consumption growth (8) cannot be aggregated unlike

the finite-agents models with the identical utility functions. Second, noting that

βi > 0 (i = 1, 2, ..., n), which is the standard assumption that the marginal utility of

private consumption decreases as the level of private consumption increases, we show

that all agents have an identical sign of consumption growth. When K0 < (>)K∗

so that R > (<)δ + ρ over time, ċi
ci

(i = 1, 2, ..., n) has a positive sign (a negative

sign) over time, meaning that the capital stocks held by each agent move in the same

direction along time, that is, if K0 < K∗, it holds that k0
i < k∗

i for all agents, and

vice verse.

Using (1) and (2) under the inelastic labor supply, we obtain:

k̇i = (R(K)− δ)ki +W (K)l̄ − ci, i = 1, 2, ..., n. (9a)

K̇ = (R(K)− δ)K +W (K)− C, (9b)

Finally, in a tractable form, Ωij can be rewritten as:5

Ωij =
−γic

−γi−1
i (k0

i − k∗
i )

−γjc
−γj−1
j (k0

j − k∗
j )
. (10)

5See Appendix A for the detail derivation.
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2.2 The steady state

First, we confirm that the steady-state levels of aggregate consumption and capital

are uniquely determined as in the representative-agent model. From (1) and (8), the

steady-state level of of aggregate capital, K∗ is determined by the modified Golden-

Rule condition as follows:

R(K∗) = ρ+ δ, (11)

where from (4) we can show that

K∗ =
n∑

i=1

k∗
i . (12)

Furthermore, summing up k̇i = 0 among all agents, and using (12) and L = 1, we

can determine the steady-state level of aggregate consumption:

C∗ = R(K∗)K∗ +W (K∗)− δK∗. (13)

As a result, the steady-state levels of aggregate capital stock as well as aggregate

consumption are uniquely determined independently of the individual characteristics

given in the heterogeneous EIS and the initial position of capital stock.

Next, we investigate the determination of the steady-state levels of individual

capital and consumption. From (7) and (10), we can use the following equations in

the steady state:

c∗i
c∗j

=
βi(k

0
i − k∗

i )

βj(k0
j − k∗

j )
, i, j = 1, 2, ..., n, i ̸= j. (14)

Without the loss of generality, we assume that the agent 1 is a base agent.

c∗i
c∗1

=
βi(k

0
i − k∗

i )

β1(k0
1 − k∗

1)
, i = 2, ..., n. (15)

Besides, from k̇i = 0 the steady-state level of private consumption is determined

by

c∗i = R(K∗)k∗
i +W (K∗)l̄ − δk∗

i , i = 1, 2, ..., n. (16)

Under the uniquely-determined level of aggregate capital stock in the steady-

state equilibrium, using 2n−equations composed of (12), (15) and (16) yields the
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following.

Proposition 1. The steady-state equilibrium is uniquely determined given k0
i .

Proof. Substituting (16) into (15), we can obtain the following:

k∗
i = k∗

i (k
∗
1),

∂k∗
i

∂k∗
1

=
(R∗k0

1 +W ∗l̄)(W ∗l̄ +R∗k∗
i )(k

0
i − k∗

i )

(R∗k0
i +W ∗l̄)(W ∗l̄ +R∗k∗

1)(k
0
1 − k∗

1)
(> 0). (17)

We notice that k0
i < (>)k∗

i and k0
j < (>)k∗

j under K0 < (>)K∗ so that the sign of

∂k∗i
∂k∗1

is always positive.

Next, substituting (17) into (12), we can obtain the following:

K∗ = k∗
1 +

n∑
i=2

k∗
i (k

∗
1). (18)

Note that the steady-state level of aggregate capital is determined by (11) so

that the value of left-side hand is fixed. Alternatively, because the right-hand side

monotonically increases with k∗
1, there is a level of k∗

1 that satisfies the equation (18),

meaning that there exists a steady-state equilibrium. �

At the uniquely-determined steady state, we analytically derive the relationship

of individual capital stocks between agents i and j. First, we assume that the initial

holdings of capital stock held by them are identical, k0
i = k0

j . In that case, from (14)

and (16) we can obtain the following:

Proposition 2. Assume that the initial levels of capital stock held by agents i and j

are the same. When K0 < K∗, the heterogeneity βi > βj leads to k∗
j > k∗

i > k0
i = k0

j

and c∗j > c∗i . Alternatively, assuming that K0 > K∗, βi > βj leads to k∗
j < k∗

i < k0
i =

k0
j and c∗j < c∗i .

Proof. See Appendix B. �

Before giving the intuitive explanation in Proposition 2, we furthermore consider

the relationship of capital stocks held by agents i and j under the assumption that

βi = βj and k0
i ̸= k0

j .

Proposition 3. Assume that βi = βj (i, j = 1, 2, ..., n and i ̸= j). When k0
i > (<)k0

j ,

it holds that k∗
i > (<)k∗

j so that c∗i > (<)c∗j .

Proof. See Appendix B. �
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Proposition 2 shows that the higher level of EIS (i.e., a lower value of βi or βj)

leads to the greater level of individual capital stock in the long run. The intuitive

explanation is given in (8). Suppose that K0 < K∗ so that R > δ + ρ over time. It

means that the consumption growth rates for all agents have positive signs. In this

economy, we suppose that βi > βj. Because EIS of the agent j is higher than that

of the agent i, the positive growth rate of consumption for the agent j is greater

than that of the agent i along time, showing that the investment by the agent j is

high relative to by the agent i. Therefore, in the steady-state equilibrium it holds

that the agent j has wealth more than the agent i, k∗
i < k∗

j . If K
0 > K∗, the above

relationship is reversed.

Next, under the assumption that βi = βj, Proposition 3 argues that the initially-

wealth rich has a greater amount of capital stock in the steady state relative to the

initially-wealth poor. Because of βi = βj, it holds that
ċi
ci
=

ċj
cj

for all times, implying

that the relative position of capital stock held by the agents i and j does not change.

Therefore, the initial condition k0
i > k0

j leads to k∗
i > k∗

j .

3 Convergence speed

Since our model can be reduced to the representative-agent model without the het-

erogeneity of EIS among all agents, it would be useful to clarify the difference

of convergence speeds between our model and the well-known Ramsey-version of

representative-agent model. Denoting by the subscript ”rep” the variables in the

representative-agent model, we can show the Euler equation:

Ċrep

Crep

=
1

βrep

(R(Krep)− δ − ρ) , (19)

instead, the capital accumulation equation in the representative-agent model is the

same to (9b). Then, we obtain the speed of convergence λrep as follows:

2λrep =

(
ρ2 − 4RK(K

∗
rep)

C∗
rep

βrep

)0.5

− ρ(> 0). (20)

Taking account of the equations (8) and (19), we notice that the steady-state levels

of aggregate capital between our model and the representative-agent model are the
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same, that is, K∗
rep = K∗ and hence C∗

rep = C∗. It can be readily confirmed that

the initial position of capital stock does not have any impacts on the speed of con-

vergence in the representative-agent model because the steady-state characterization

is determined regardless of the initial capital stock. In addition, we can see that

as the inverse of βrep increases, the speeds of convergence always increase. In other

words, when the representative agent has a higher EIS so that the consumption path

becomes steeper, the speed of convergence becomes faster.

Next, in our model the convergence speed λ is modified as:6

2λ =

(
ρ2 − 4RK(K

∗)
n∑

h=1

(
c∗h
βh

))0.5

− ρ(> 0). (21)

As expected, the heterogeneity of EIS generates the different form of convergence

speed; however, two convergence speeds (20) and (21) are very similar. Assuming

that βh = βrep for all agents and the initial holdings of capital stock among all agents

are the same, it holds that
∑n

h=1

(
c∗h
βh

)
=

C∗
rep

βrep
, thereby concluding that the speeds

of convergence between our model and the representative-agent model are identical.

Making use of this fact, we can confirm the following.

Result 1. Assume that βi = βj (i, j = 1, 2, ..., n) (i ̸= j). Then, the initial levels of

aggregate capital stock as well as individual capital stock does not have any impacts

on the speeds of convergence.

To give an intuitive explanation, we suppose that the initial level of capital stock

held by an agent j increases. Then, the impact on the speed of convergence is given

by:

∂λ

∂k0
j

= −RK(K
∗)

(
R(K∗)2 − 4RK(K

∗)
n∑

h=1

(
c∗h
βh

))−0.5 ∂
(∑n

h=1

(
c∗h
βh

))
∂k0

j︸ ︷︷ ︸
(#1)

. (22)

where

(#1) =
ρ

βj

∂k∗
j

∂k0
j

+
h=n∑

h=1,h̸=j

(
ρ

βh

∂k∗
h

∂k0
j

)
6See Appendix C for the derivation.
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From (#1), we can show the role of heterogeneous EIS for the convergence speed. As

can be seen in (21), the steady-state level of private consumption is weighted by the

parameter βi. The weighted impact on the steady-state level of private consumption

cannot be canceled out among the agents, that is, (#1) takes non-zero, meaning that

the initial capital stock has an impact on the speed of convergence.

Alternatively, the homogeneity of EIS, β ≡ βi = βj (i, j = 1, 2, ..., n) (i ̸= j) allow

us to give the same weights among the agents, not separate ones. Then, the terms

(#1) can be rewritten as

(#1′) =
ρ

β

h=n∑
h=1

(
∂k∗

h

∂k0
j

)
Since the steady-state level of aggregate capital stock is constant regardless of the

initial position of capital stock, it holds that
∑h=n

h=1

(
∂k∗h
∂k0j

)
= 0, therefore showing

that ∂λ
∂k0j

= 0. In other words, an increase in the initial level of capital stock held by

an agent stock affects the steady-state levels of individual capital stocks, such that

the steady-state level of aggregate capital stock is constant. As a result, unless EIS

is heterogeneous, the initial position of individual capital stock does not affect the

speeds of convergence as in the representative-agent model.7

To obtain a clear idea about the speeds of convergence, we turn to numerical

simulations in next subsection. Our interest is firstly a demand change in the form

that EIS increases or decreases. This is because the numerical method allows us

to see the quantitative impacts on the speeds of convergence by changing EIS of

an agent rather than all agents. Since a change in EIS of an agent within many

agents seems to have less impacts than that in the representative-agent model, it

can be guessed that the speeds of convergence become more insensitive to EIS of an

agent under the finite agents. Then, we want to confirm how much the quantitative

impacts shrink.

Second, it would be interesting to confirm if an increase in the arithmetic mean

of EIS makes the speeds of convergence increased. In other words, when EIS of finite

7We notice that introducing the endogenous labor supply relaxes this fact so that Result 1 does

not hold. Please see section 5.2.
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agents separately changes so that the arithmetic mean of them increases, we do not

make clear whether the speed of convergence increases as in the representative-agent

model. For instance, we assume that there are two agents in this economy where

their EIS are different. Then, from (8), the sum of consumption growth between

them is given by
ċ1
c1

+
ċ2
c2

=

(
1

β1

+
1

β2

)
(R− δ − ρ) . (23)

Intuitively, since an increase in EIS always makes the speeds of convergence increased

in the representative-agent model, the increase in the sum of EIS, 1
β1

+ 1
β2

would

lead to the faster speeds of convergence. However, unlike the representative-agent

model, since EIS of our model impacts not only the dynamic behavior of private

consumption but also the steady-state characterization, the relationship between

EIS and the convergence speeds would be somewhat complicated.

Next, we confirm the effects on the convergence speeds by changing initial con-

ditions of capital stock. The representative-agent assumption that a single type of

agent lives in the economy extremely simplifies the relationship between the conver-

gence speeds and the initial economy. Concretely, since the initial level of capital

stock in the representative-agent model does not affect the steady-state characteri-

zation as well as the dynamic motion, the initial condition of capital stock does not

have any impacts on the speeds of convergence. In sum, because of the simplicity,

the speeds of convergence take an identical rate regardless of whether the growth

rate of private consumption is positive or negative, whether the initial economy is

extremely near or far away from the steady state, and whether the initial amount

of wealth (i.e., capital stock) among the agents is equal or unequal. Alternatively,

introducing the heterogeneous tastes of EIS, the speeds of convergence are affected

by such conditions of initial economy.

4 Numerical examples

We shall employ numerical simulation to confirm the quantitative impacts of EIS and

the initial condition of capital stock on the speeds of convergence. Making use of

12



prevalent parameters as a basic case, our objective is to confirm the responsiveness of

the convergence speed when the economy deviates from the benchmark economy. We

assume that there are two agents 1 and 2 in the benchmark economy. The production

function takes a form of Cobb-Douglas Y = AKα where A > 0 and 0 < α < 1.

The following parameter values shall be given:

Production parameters: A = 0.5, α = 0.35, δ = 0.04,

Taste parameters: ρ = 0.04, β1 = β2 = 2.5,

Initial capital stock:
K0

K∗ = 0.9, k0
1 = k0

2,

Following Turnovsky (2002), we use the same values of parameters A, α, δ and

ρ. Setting these values are conventional, showing that the return to capital is 8%

under ρ = 0.04 and δ = 0.04. Next, we assume that the initial economy has 90%

level of aggregate capital stock in the steady state, K0 = 0.9K∗ and hence K0 < K∗,

namely the consumption growth has a positive rate so that both levels of capital

stock as well as private consumption increase toward the steady state. We suppose

that the initial wealth is completely equal in the sense that the initial holdings of

capital stocks by the agents 1 and 2 are the same, that is, k0
1 = k0

2. The value of

EMU is given by β1 = β2 = 2.5, meaning that EIS, which is formed as its inverse,

takes 0.4 as in Turnovsky (2002). Finally, the choices of ρ = δ = 0.04, A = 0.5 and

α = 0.35 determine the steady-state level of aggregate capital stock, K∗ = 3.334,

leading to K0 = 3.00, k0
1 = k0

2 = 1.5 and k∗
1 = k∗

2 = 1.667. For the benchmark

economy, the absolute value of stable root is 0.0457, that is, the economy converges

to the steady state at 4.57% per year, meaning that because the level of aggregate

capital stock in the initial economy deviates from its steady-state level by 10%, it

takes about 2 years until the steady-state equilibrium. For instance, when the rate

of time preference changes from ρ = 0.04 to 0.06, the speed of convergence increases

from 4.57% to 5.54%.

First, we make use of a demand shock by changing the parameters βi from 0.1,

1.5, 2.4, 2.5, 2.6, 3.5 to 4.9 in a large area, that is, EIS varies over the range between
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1
βi

= 0.2 and 10. When the value βi = 2.5 is defined as the basic case, which means

that EIS is 0.4, we suppose that the values 2.4 and 2.6 are slight changes of EIS. The

value 1.5 (3.5) shows about 25% higher (10% lower) than the basic case. The rest

values 0.1 and 4.9 are used to cover all plausible values.

Second, in order to investigate the role of capital stock in the initial economy,

we set K0

K∗ = 0.5, 0.9, 0.95, 1.05, 1.1 and 1.5. In particular, the values below the

unity mean that the initial level of aggregate capital stock is lower than its steady-

state level, and hence the rates of consumption growth are positive. Alternatively, the

values above the unity provide the negative rates of consumption growth. The values

0.95 and 1.05 are supposed that the initial economy is very close to the steady state;

instead, when we use the values 0.5 and 1.5, we suppose that the initial economy is

very far from the steady state.8

Finally, using a parameter ϵ = 0.1, 0.4, 0.6 and 0.9, we define the initial-unequal

degree as k0
1 = ϵK0 and k0

2 = (1 − ϵ)K0. The values ϵ = 0.1 and 0.4 assume that

the agent 1 is initially wealth-poor relative to the agent 2; instead, setting ϵ = 0.6

and 0.9 suppose that the agent 1 is initially wealth-rich. Furthermore, making use

of ϵ = 0.1 and 0.9, we suppose that there is a large degree of inequality in the initial

economy.

4.1 Change in EIS

Table 1 presents the speeds of convergence as β1 and β2 vary over the range between

0.1 and 4.9. We must note that for example, the economy under β1 = 0.1 and

β2 = 1.5 is essentially the same with that under β1 = 1.5 and β2 = 0.1 if the steady-

state level of capital stock held by the agent 1 is replaced by that held by the agent

2. Therefore, we omit the corresponding results.

Looking at the bold letters, we can confirm that two agents have the same taste

8The distance between the initial economy and the steady state, K0

K∗ = 0.5 or 1.5 may not be

plausible after the approximation of dynamic system; however, to confirm the impacts on the speeds

of convergence in a larger range, we picked up the values 0.5 and 1.5 as the extreme cases.
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of EIS, pointing out the speeds of convergence in the representative-agent model. As

the values of β1 and β2 identically increase (decrease) from the basic case, the speeds

of convergence become lower (faster). Next, we consider the impacts by increasing

the value of β1 given β2. Looking across each row, we can see that the speeds of

convergence respond negatively to variations in EIS as in the representative-agent

model. As expected, the quantitative impacts shrink relative to the representative-

agent model. For instance, in the representative-agent model, about 40% increase of

EIS from β1 = β2 = 2.5 to β1 = β2 = 1.5 makes the speed of convergence increased

by around 1.8%; instead, when β2 = 2.5 is fixed, such 40 % increase of EIS from

β1 = 2.5 to β1 = 1.5 leads to the faster speed of convergence by 0.9 %, but its change

of convergence speed is only half of that in the representative-agent model.

Table 2 shows how the quantitative impacts shrink as the number of finite agents

increases. Concretely, we examine the quantitative impacts of β1 by increasing the

number of finite agents where the newly-introduced agents are identical to the agent

2. For instance, n = 3 in Table 2 means that there are three agents composed of

the agent 1 and two agents whose types are the same as the agent 2. Then, it holds

that k∗
1 + 2k∗

2 = K∗. From this table, we can see that the speeds of convergence

are more insensitive to EIS as the number of finite agents increases. For instance,

in (n = 3)-economy, when β1 changes from 2.5 to 0.1, the speed of convergence

increases by about 12.6 %; instead, it increases by 5.7 % in (n = 10)-economy. In

(n = 50)-economy, the change in EIS makes the speed of convergence increased by

only 1.8%.

Next, we consider changes in the sum of EIS
(

1
β1

+ 1
β2

)
given in (23). Figure

1 shows the comparison of the speeds of convergence from the basic case where in

the basic case, β1 and β2 are set at 2.5, and hence 1
2.5

+ 1
2.5

= 0.8 and the speed

of convergence is 4.57 %. When β1 and β2 respectively changes in the range where

β1 = 3.2 − 3.3 and β2 = 2 − 2.05, we compare the speeds of convergence between

the corresponding parameters sets and the basic case. The parameters sets with the

black square show that
(

1
β1

+ 1
β2

)
> 0.8, that is, the sum of EIS is large relative to

the benchmark economy. Alternatively, a marker without the black square shows
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that the sum of EIS is smaller than that in the benchmark economy. The areas

with a blue circle indicate that the speeds of convergence under the corresponding

parameters are slower than that in the basic case; instead, the areas with a red

triangle indicate that they are faster than that in the basic case.

We are interested in a triangle marker without a black square, meaning that

although the sum of EIS decreases from the basic case, the speeds of convergence are

faster against our intuition. Such a result cannot be confirmed in the representative-

agent model. Therefore, this area would be caused by the difference of the impacts

of EIS between the representative-agent model and our model. In the representative-

agent model, EIS affects only the dynamic motion of private consumption, thereby

showing that an increase in EIS always generates a faster speed of convergence.

In our model, the impact of EIS on the speeds of convergence is shown by

∂λ

∂βj

= −RK(K
∗)

(
R(K∗)2 − 4RK(K

∗)
n∑

h=1

(
c∗h
βh

))−0.5 ∂
(∑n

h=1

(
c∗h
βh

))
∂βj︸ ︷︷ ︸
(#2)

. (24a)

where

(#2) = −
c∗j
β2
j

+
ρ

βj

∂k∗
j

∂βj

+
h=n∑

h=1,h̸=j

(
ρ

βh

∂k∗
h

∂βj

)
. (24b)

Note that the results of static comparative analysis,
∂k∗j
∂βj

and
∂k∗h
∂βj

show that
∂k∗j
∂βj

< (>)0

and
∂k∗h
∂βj

> (<)0 under K0 < (>)K∗.9

The impact in our model is composed of three terms in (#2). First term shows

the effect through the change in the consumption growth. As in the representative

agent model, this effect has a negative impact on the convergence speed, that is, an

increase in EIS leads to a faster speed of convergence. The other terms indicate the

effects generated by the change in the steady-state levels of individual capital stocks,

which cannot be seen in the representative-agent model. In particular, the second

term in (#2) shows that an increase in EIS of the agent j impacts the steady-state

level of capital stock held by the agent j, and its third term indicates those by the

rest agents. The assumption that there are only two agents 1 and 2 in this economy

9See Appendix D.
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allows us to understand this impact more easily:

(#2′) = − c∗1
β2
1

+ ρ
∂k∗

1

∂β1

(
1

β1

− 1

β2

)
. (25)

where it holds that
∂k∗1
∂β1

= −∂k∗2
∂β2

because the steady-state level of aggregate capital

stock is constant regardless of such a change in EIS; however, we cannot furthermore

identify the sign of second term. As a result, the additional impact makes the

relationship between EIS and the convergence speeds complicated.10

4.2 Change in the initial capital stock

Now, we turn to the effects of initial capital stock on the speeds of convergence.

Because the initial capital stock does not have any impacts on the convergence speed

in the representative-agent model, its comparison would be useless. Moreover, we

remember that unless EIS is heterogeneous, the initial position of capital stock does

not influence the speeds of convergence as given in Result 1.

Table 3 presents the speeds of convergence as EIS varies where we assume that

K0 = 1.1K∗. Except for the initial position of aggregate capital stock, the parameters

given in Table 3 are the same to those in Table 1. More concretely, Table 1 supposes

that the dynamic motion of private consumption by all agents has a positive sign,

thereby implying that the levels of private consumption as well as individual capital

stock increase toward the steady state. Instead, Table 3 assumes that its dynamic

motion has a negative sign.

First, as in Result 1, under the parameter sets β1 = β2 in the bold letters, the

convergence speeds take the same rates between Table 1 and 3, implying that the

initial position of aggregate capital stock does not affect the speeds of convergence

without the heterogeneity of EIS. Next, we can see that a change in EIS oppositely

respond to the steady-state levels of capital stock held by the agent 1 relative to that

at Table 1 as can be seen in Proposition 2, that is, the greater EIS leads to the lower

levels of individual capital stocks unlike Table 1.

10Additional clarification will be given later.
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We can see from Table 1 and 3 that whether the rate of consumption growth is

positive or negative has an impact on the speeds of convergence. In particular, as

the degree of heterogeneity about EIS is larger, the impact can be confirmed. For

instance, setting the values β1 = 0.1 and β2 = 4.9, the speed of convergence is respec-

tively 20.67 % under K0 = 0.9K∗ and 20.24 % under K0 = 1.1K∗. In our parameter

sets, the economy where the consumption growth has a positive rate seems to con-

verge toward the steady-state equilibrium faster than the other; however, when each

EIS is close enough, whether the rate of consumption growth is positive or negative

would not largely yield the difference of impacts on the speeds of convergence.

Let us consider the cases that the distance between K0 and K∗ is 50% or 5%.

The values 50% and 5% mean that the initial economy is extremely far away from,

or near to the steady state. Table 4 provides the speeds of convergence when the

value of β1 changes where β2 = 2.5 and k0
1 = k0

2. First, note that when β1 = 2.5

given in the bold letters, the initial level of aggregate capital stock does not have

any impacts on the speeds of convergence as proved in Result 1. Next, assuming

that β1 ̸= β2, the difference between K0 and K∗ affects the speeds of convergence.

Moving across the columns of Table 4, we can see that the speeds of convergence

become slower as the initial level of aggregate capital stock increases. For instance,

if we use β1 = 0.1 in an extreme case, an increase in the initial level of capital stock

from K0 = 0.5K∗ to K0 = 0.95K∗ make the speed of convergence increased by 0.9%.

When the heterogeneity of EIS cannot be almost seen, for instance, β1 = 2.4 and

β2 = 2.5, we can confirm that the initial position of aggregate capital stock does not

have any critical impacts on the speeds of convergence.

Assuming that the initial levels of capital stock held by two agents 1 and 2 are not

identical, Table 5 presents the relationship between the initial-wealth inequality and

the convergence speeds. Supposing that k0
1 = ϵK0 and k0

2 = (1−ϵ)K0, the parameter

ϵ is assumed to be 0.1, 0.4, 0.6 or 0.9 where β2 = 2.5 and K0 = 0.9K∗. Looking at

the column β1 = 2.5, Result 1 is supported: the initial difference of capital stock does

not have any impacts on the speeds of convergence. Next, we compare the speeds

of convergence under the assumption that the agent 1 is the initially-wealth rich or
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the initially-wealth poor. When β1 is below β2 = 2.5, the speeds of convergence

become faster as ϵ increases. Alternatively, when β1 is greater than β2 = 2.5, the

relationship is reversed. In sum, the greater EIS of the initially-wealth rich generates

the faster speed of convergence, which would be intuitively plausible because the

private consumption path of an agent who consume significant amounts is steeper.

Finally, in Figure 2 we revisit the impacts on the speeds of convergence by chang-

ing the sum of EIS. As in Figure 1, we take account of a deviation from β1 = β2 = 2.5

where K0 = 0.9K∗; however, unlike Figure 1, we assume that the initial levels of

capital stock held by the agents 1 and 2 are not equal. Both figures 2(a) and (b)

use β1 = 2.8 − 3.2 and β2 = 2 − 2.2, which covers the parameters sets in Figure

1 and varies in a larger range. Figure 2(a) assumes that ϵ = 0.75. In that case,

we can see a triangle without a black square in a larger range relative to Figure 1.

In other words, in larger parameters sets, a decrease in the sum of EIS from the

benchmark case increases makes the speeds of convergence increased. Alternatively,

looking at Figure 2(b) where ϵ = 0.1, it can be seen to change the results dramati-

cally, which shows that there are not red triangles but blue circles with a black square

in a large range, meaning that an increase in the sum of EIS from the benchmark

case makes the speeds of convergence decreased against the existing results in the

representative-agent model.

5 Discussion

5.1 Stone-Geary preferences

CRRA type of utility function is a popular specification such that EIS is defined by

a constant parameter. However, in a more realistic framework, EIS may not be fixed

over time. In that time, it would be interesting to use the Stone-Geary preference

because it allows EIS to depend on the level of private consumption, thereby moving

EIS over time. Furthermore, since the initial condition of capital stock affects the

steady-state characterization in our model, EIS itself depends on the initial capital

19



stock.

We make use of the following Stone-Geary preferences:

ui(ci) =
(ci − c̄i)

1−βi

1− βi

, βi > 0, (26)

where the parameter c̄i could be positive or negative. Imposing c̄i = 0 allows us to

modify CRRA type of utility function used in the basic framework. A positive sign

of c̄i can be interpreted as the subsistence level of consumption, that is, the agent

i has a minimum requirement consumption level. Alternatively, if c̄i could have a

negative sign, we consider that the agent i derives well-defined utility even if they

do not consume anything.

Taking account of EIS, we can give a different interpretation to the sign of c̄i:

− ui
c(ci)

ui
cc(ci)ci

=
1

βi

− c̄i
ci
. (27)

Suppose that c̄i > 0. In that case, the greater the consumption, the higher the EIS

given βi and c̄i, which can be interpreted that the agents who consume a large amount

in the current time save to enjoy higher consumption tomorrow. Instead, assuming

that c̄i < 0, the relationship is reversed, that is, the greater the consumption, the

lower the EIS, which allows us to imagine the case where the agents who consume a

small amount in the current time save to enjoy higher consumption tomorrow. We

make use of both signs of c̄i in the numerical simulations because our interest is to

see the sensitivity of the speeds of convergence to the parameter c̄i in a larger range.

Then, the speed of convergence, λSG can be rewritten as11

2λSG =

(
ρ2 − 4RK(K

∗)
n∑

h=1

(
c∗h
βh

− c̄h

))0.5

− ρ(> 0), (28)

Before proceeding the numerical simulation, we can show the following.

Result 2. Assume that β ≡ βi for all agents (i = 1, 2, ..., n). Then, the initial level

11The equation (14) can be rewritten as

c∗i
c∗j

=

(
1
βj

− c̄j
c∗j

) (
k0i − k∗i

)(
1
βi

− c̄i
c∗i

)
(k0j − k∗j )
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of aggregate capital stock as well as those of individual capital stock do not have any

impacts on the speed of convergence regardless of the values of c̄i.

Proof. Importance is that the steady-state level of aggregate capital stock is con-

stant, and therefore we can show that
∑n

i=1
∂ki
∂k0j

= 0 or
∑n

i=1
∂ki
∂K0 = 0.

Using (28), we now provide a comparative static result by increasing the initial

level of capital stock held by an agent j under β = βi for all agents (i = 1, 2, ..., n)

as follows:

∂λSG

∂k0
j

= −RK(K
∗)

(
ρ2 − 4RK(K

∗)
n∑

h=1

(
c∗h
βh

− c̄h

))−0.5
ρ

β

n∑
i=1

∂ki
∂k0

j

= 0. (29)

where we make use of
∑n

i=1
∂ki
∂K0 = 0.

In the similar way, we can show that ∂λSG

∂k0j
= 0. �

Result 2 says that even if the parameter c̄i is heterogeneous so that EIS among

agents does not take an identical value, the homogeneity of βi cannot generate the

impacts of initial capital stock on the speeds of convergence. Then, the heterogeneity

of parameter βi has a pivotal role in determining whether the initial level of capital

stock affects the speed of convergence or not. Now, let us consider the dynamic

motion of private consumption:

ċi =

(
ci
βi

− c̄i

)
(R− δ − ρ). (30)

If the parameter βi takes an identical value among agents, that is, β = βi (i =

1, 2, ..., n), the equation (sgeuler) can be aggregated as follows:

Ċ =

(
C

β
− b

)
(R− δ − ρ). (31)

where b =
∑n

i=1 c̄i. The dynamic motion of private consumption can be reduced to

that of aggregate consumption, meaning that the initial capital stock does not have

any impacts on the speed of convergence because the system of this economy can be

represented by the dynamic behaviors of aggregate consumption and capital stock.

We now turn to Table 6 which shows the sensitivity of the convergence speeds by
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changing the values of c̄1 and c̄2 under β1 = β2 = 2.5.12 We assume that each value

of c̄1 and c̄2 takes −25%, −5%, 0%, 5% and 25% levels of initial income defined

by I0 ≡ w(K0) + r(K0)k0
i where K0 = 0.9K∗ and k0

1 = k0
2. That is, the values

5% and 25% indicate that 5% or 25% income levels at the initial economy are the

subsistence levels of each agent. In particular, while 5% represents the mild minimum

consumption level, 25% is very high subsistence level. The values −25% and −5%

are also defined by the similar way.

The bold letters in Table 6 suppose that two agents are identical in the sense

that c̄1 = c̄2 under k0
1 = k0

2 and β1 = β2. In that case, it can be seen that as c̄1 = c̄2

increases, the speeds of convergence become slower. This result is plausible because

such an increase in the parameter c̄1 = c̄2 makes EIS lower. For instance, an increase

from c̄1 = c̄2 = 0 to c̄1 = c̄2 = 0.5 makes the speed of convergence increased from

4.57% to 6.48%. When we look down the rows, an increase in c̄1 given c̄2 similarly

leads to the slower speed of convergence; however, the quantitative impacts shrink.

Furthermore, when c̄1 = −c̄2, the speeds of convergence are given by 4.57% in all

cases. This is because the impacts generated by the heterogeneity of preference

parameters c̄1 and c̄2 get balanced out as can be easily confirmed in (28).

5.2 The endogenous labor supply

Taking account of a departure from our basic framework, the introducing of endoge-

nous labor supply would be general where the endogenous variables in this model

are denoted by tilde ”∼”.

Denoting by l̃i the amount of labor supply by the agent i, we provide the lifelong

utility of agent i as follows:

Ũ i =

∫ ∞

0

(
c̃1−βi

i

1− βi

− l̃1+χi

i

1 + χi

)
e−ρtdt, χi > 0, i = 1, 2, .., n. (32)

where χi is the elasticity of marginal disutility with respect to the labor supply.

Because our interest is the role of EIS in the dynamic motion of labor supply, we

12Because of Result 2 and space, we omit the impacts of initial capital stock on the speeds of

convergence based on the heterogeneity of c̄i.
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assume that the agents have different values of χi so that each dynamic motion of

labor supply is different among agents. Alternatively, to clarify the impacts generated

by EIS in the dynamic equation of labor supply, we assume that the intratemporal

elasticity of substitution between private consumption and labor supply is the unity,

and therefore we adopt a simple form of separable utility function.

Maximizing (32) subject to (2) yields the following necessary conditions:

c̃−βi

i = q̃i, i = 1, 2, .., n, (33a)

l̃χi

i = q̃iW̃ , i = 1, 2, .., n, (33b)

˙̃qi
q̃i

= ρ+ δ − R̃, i = 1, 2, .., n.. (33c)

In order to ensure that each agent’s intertemporal budget constraint is met, the

transversality condition is imposed limt→∞ q̃ik̃ie
−ρt = 0.

As in (7), from (33c) the ratio of marginal utility between agents is constant:

Ω̃ij =
c̃−βi

i

c̃
−βj

j

=
l̃χi

i

l̃
χj

j

, i, j = 1, 2, ..., n, i ̸= j. (34)

Because the parameters χi and χj are not the same, the amount of labor supplied

by these agents does not have a constant ratio, that is,
˙̃
li
l̃i
̸=

˙̃
lj

l̃j
. In particular, the

dynamic equation of an agent i’s labor supply is:

˙̃li

l̃i
= −

1− αLX̃

L̃

χi

(
R̃− δ − ρ− αK

(
R̃− δ +

W̃ L̃− C̃

K̃

))
, i = 1, 2, .., n, (35)

where

αK =
K̃ ∂W̃

∂K

W̃
(> 0), αL =

L̃∂W̃
∂L̃

W̃
(< 0), X̃ = −

∑n
i=1

(
l̃i
χi

)
1− αL

L̃

∑n
i=1

(
l̃i
χi

)(> 0). (36)

Next, from (33a) and (33b) we can show the following:

W̃ =
l̃χi

i

c̃−βi

i

, i = 1, 2, ..., n. (37)

Noting that the left-hand side in (37) is identical among all agents, the ratio of

marginal utility in private consumption and marginal disutility in labor supply is
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the same among them. If χi and βi could be the same among all agents, the ratio of

labor supply and private consumption among the agents is the same.

To determine the steady-state levels of (3n+2)-variables {c̃∗1, ..., c̃∗n, l̃∗1, ..., l̃∗n, k̃∗
1, ..., k̃

∗
n, K

∗, L∗},

we make use of the following set of (3n+ 2)-equations:

L̃∗ =
n∑

i=1

l̃∗i , K̃∗ =
n∑

i=1

k̃∗
i , (38a)

R(K̃∗, L̃∗) = δ + ρ (38b)

c∗i = (R(K̃∗, L̃∗)− δ)k̃∗
i +W (K̃∗, L̃∗)l̃∗i , i = 1, 2, .., n, (38c)

W̃ ∗ =
(l̃∗i )

χi

(c̃∗i )
−βi

, i = 1, 2, ..., n. (38d)

c̃∗i
c̃∗1

=
βi(k

0
i − k̃∗

i )

β1(k0
1 − k̃∗

1)
, i = 2, 3..., n. (38e)

where we note that the separability of instantaneous utility functions allow us to

derive (38e).13

Specifying the production function as Y = 0.5K0.35L0.65, Table 7 shows the sensi-

tivity of the responses to a shock of EIS in the labor supply. The values of parameters

are based on the benchmark case where β1 = β2 = 2.5 and k0
1 = k0

2 = 0.5K∗. Unlike

the exogenous labor supply, the rates of time preference and depreciation cannot pin

down the steady-state level of aggregate capital stock, which means that its steady-

state level of aggregate capital stock depends on not only EIS but also the initial

conditions of capital stock. Therefore, as in our model with the exogenous labor

supply, we cannot define the initial level of aggregate capital stock as the distance

from its steady-state level. We assume that K0 = 5, which is 1.5 times of the steady-

state level of the aggregate capital stock in our model where the labor supply is

exogenously given. As can be seen in Table 7, we can see that K0 < K∗ in all cases.

In particular, looking at the basic case for χ1 = χ2 = 4, it holds that the initial

level of aggregate capital stock is 80 %-steady-state level of aggregate capital stock.

K0 = 0.8K∗.

13See Appendix A.
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The choice of χi, within a larger range 1−7, is used in our numerical examples.

When χ1 = χ2 = 4 is given as the basic value as in Turnovsky (2002), the values 3

and 5 are supposed to be mild changes. Alternatively, to confirm the impacts in a

large range, we pick up χi = 1 and 7 as the extreme cases. The speed of convergence

for the basic case χ1 = χ2 = 4 is 2.64%. The bold letters point out the cases

where χ1 = χ2. In that case, we can see that as the value of χ1 = χ2 increases

(decreases), the speeds of convergence are slower (faster), which is intuitive because

the dynamic motion of labor supply is slow (fast) as confirmed in (35). From the

similar viewpoint, when the value of χ1 increases given χ2, the speeds of convergence

become slow where the quantitative impacts of an increase in χ1 are weaker than

those by increasing both levels of χ1 = χ2.

Finally, we confirmed the speeds of convergence by increasing EIS in the private

consumption. When β1 = β2 increases from 2.5 to 3.5, the speed of convergence

changes from 2.64 % to 2.52 %; instead, a decrease from β1 = β2 = 2.5 to 1.5 makes

the speed of convergence increased from 2.64% to 2.77%. Even if β1 = β2 = 2.5

and χ1 = χ2 = 4 so that two agents have the same preferences, the initial condition

of capital stock affects the speeds of convergence, that is, when k0
1 = 0.1K0 and

k0
2 = 0.9K0, such an increase in the initial-wealth inequality causes the lower speed

of convergence from 2.64 % to 2.63 %.

6 Conclusion

The introduction of heterogeneous EIS has an important difference for the dynamic

motion of private consumption, that is, the dynamic motion of private consumption

cannot be aggregated so that the existence of various types of private consumption

paths is permitted. Then, the differences of consumption paths among agents gener-

ate a prediction that the heterogeneous EIS facilitates departures from the existing

results of convergence speeds in the representative-agent model.

In this paper, using a finite-agent model with the heterogeneous EIS, we revisit

the speeds of convergence by focusing on two key factors: the heterogeneous EIS and
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the initial position of capital stock. Our main contributions are as follows. First,

although the heterogeneity of EIS makes the steady-state characterization difficult,

we show that the steady-state equilibrium is uniquely determined in a tractable way.

Second, in numerical situations, we show that against the existing findings, an in-

crease in the sum of EIS may make the speeds of convergence decreased, and vice

verse. Furthermore, because the initial capital stock affects the speeds of conver-

gence in our model, we comprehensively examine the relationship between the initial

position of capital stock and the convergence speeds. Finally, when our model is

applied to more general setting, which are the Stone-Geary utility function and the

endogenous labor supply, we examine the role of EIS on the speeds of convergence

again.
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Appendix A.

Exogenous labor supply: We derive a tractable form of the constant parameter

Ωij from the following two points. Importance is that our model can be reduced to

another model so that we obtain a condition from these two models. Second, using

a linear approximation of the marginal utility, we rewrite the equation (6b).

Our system can be reduced to (n+1) equations (8) and (9b) where C =
∑n

i=1 ci. It

has been well-known that there is a continuum of the steady state that depends on the

initial conditions, and that the number of zero root is (n− 1) and the number of the

stable root is one.14 Hence, when we provide the initial conditions, there is a specific

steady-state equilibrium, which corresponds to the initial conditions. Denoting by Λ

the stable root in this reduced form, we show that there is a converging path toward

the steady-state equilibrium as follows:

ci(t)− c∗ = Γi(K
0 −K∗)e−Λt, i = 1, 2, ..., n, (A.1)

where t denotes time and Γi is an element of corresponding eigenvector.

Moreover, summing up (A.1) among all agents, the aggregate capital and aggre-

gate consumption is given by a linear relationship:

C(t)− C∗ = Γ(K(0)−K∗)e−Λt, (A.2)

where Γ ≡
∑n

i=1 Γi.

Next, let us turn to our model composed of (2n) equations in (8) and (9a).

Because both models are essentially the same, there is the same steady-state equi-

librium under the same initial conditions. Hence, denoting by λ the stable root in

the economy, the solution of the linearized system along the stable path is

ki(t) = k∗
i +B1Γie

−λt, i = 1, 2, .., n, (A.3a)

ci(t) = c∗i +B1Γn+ie
−λt, i = 1, 2, .., n, (A.3b)

where B1 is an undetermined constant, and Γj and Γn+i are the eigenvectors corre-

sponding to the stable root λ.

14For example, see Li et al. (2003).

36



Hence, the equations (A.3b) can be rewritten as:

ci(t) = c∗i + (ki(0)− k∗
i )
Γn+i

Γi

e−λt, i = 1, 2, .., n. (A.4)

Summing up (A.4) about all agents, the motion of the aggregate consumption is

given by

C(t)− C∗ =
n∑

i=1

(
(ki(0)− k∗

i )Γn+i

Γi

)
e−λt. (A.5)

Because the equation (A.5) is equal to (A.2) along all time showed by t, it must

hold that Λ = λ and Γ = ΓN+i

Γi
(i = 1, 2, .., n) whose condition pins down the steady-

state levels of individual capital stock in the form that depends on the initial holding

of capital stock. Then, the equation (A.4) can be rewritten as

ci(t) = c∗i + (ki(0)− k∗
i )Γe

−Λt, i = 1, 2, .., n. (A.6)

Finally, making use of (A.6), we give the linear approximation of marginal utility:

ui
c(t) = ui

c(c
∗
i ) + ui

cc(c
∗
i )(ci(t)− c∗i )e

−Λt,

= ui
c(c

∗
i ) + ui

cc(c
∗
i )Γ(ki(0)− k∗

i )e
−Λt, i = 1, 2, .., n. (A.7)

Using (A.7), the positive parameter Ωij can be rewritten as the form that depends

on the levels of individual capital stocks in the steady state and the initial periods:(
ui
c(t)

uj
c(t)

=

)
Ωij =

Ωiju
j
c(c

∗
j) + ui

cc(c
∗
i )Γ(ki(0)− k∗

i )e
−Λt

uj
c(c∗j) + uj

cc(c∗j)Γ(kj(0)− k∗
j )e

−Λt
, (A.8a)

where we make use of ui
c(c

∗
i ) = Ωiju

j
c(c

∗
j). We can show that

Ωij =

Ωiju
j
c(c

∗
j )

Γ(kj(0)−k∗j )e
−Λt + ui

cc(c
∗
i )

k0i−k∗i
k0j−k∗j

ui
c(c

∗
i )

Γ(kj(0)−k∗j )e
−Λt + uj

cc(c∗j)
. (A.8b)

Arranging for (A.8b), we obtain (10).

Endogenous labor supply Even if the endogenous labor supply is introduced in

our model, using the capital accumulation equation (2) we can reduce the individual

capital stock to the aggregate one as in the model with the exogenous labor sup-

ply. As a result, it can be easily confirmed that the similar way of the above is
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applied where we note that the separable utility function is used so that the linear

approximation of marginal utility of private consumption is given by (A.7).

Appendix B.

Proposition 2: Substituting (16) into (14), we can show the following.

(ρk∗
i +W ∗)(K0 − k∗

j )

(ρk∗
j +W ∗)(K0 − k∗

i )
=

βi

βj

, (B.1)

where we make use of (11).

Assume that βi > βj so that the ratio βi

βj
given in the right-hand side of (B.1) is

above the unity. In that case, from (B.1) the following inequality holds:

(ρk∗
i +W ∗)(K0 − k∗

j )

(ρk∗
j +W ∗)(K0 − k∗

i )
> 1. (B.2)

We suppose that K0 < K∗. Since K0 < k∗
i , we can rewrite (B.2) as (ρK0 +

W ∗)(k∗
i − k∗

j ) < 0, concluding that k∗
i < k∗

j and therefore c∗i < c∗j in (16). If

K0 > K∗, the relationship is reversed, that is, k∗
i > k∗

j and c∗i > c∗j .

Proposition 3: We assume that βi = βj. Hence, the equation (14) can be rewritten

as

(ρk∗
j + w∗)(k0

j − k0
i ) = (ρk0

j + w∗)(k∗
j − k∗

i ). (B.3)

It means that k0
i > k0

j leads to k∗
i > k∗

j , and furthermore c∗i > c∗j .

Appendix C.

We explicitly derive the shadow value in our model where the labor supply is

exogenously given. Making use of (3) and (8), we can show the following:

ċ1

ċ2

ċ3

...

K̇


=



−λ 0 0 ...... B1

0 −λ 0 ...... B2

0 0 −λ ...... B3

... ... ... ... ...

−1 −1 −1 ... ρ− λ


︸ ︷︷ ︸

M1



c1 − c∗1

c2 − c∗2

c3 − c∗3

...

K −K∗


(B.1)

where Bi =
c∗iRK(K∗)

βi
(< 0).
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Therefore, M1 (n × n) can be rewritten as

M1 =



−λ 0 0 ...... B1

0 −λ 0 ...... B2

0 0 −λ ...... B3

... ... ... ... ...

0 −1 −1 ... ρ− λ


= −λ


−λ 0 ...... B2

0 −λ ...... B3

... ... ... ...

−1 −1 ... ρ− λ− B1

λ


︸ ︷︷ ︸

M2

= 0

(B.2)

where the system M2 is composed of (n-1)× (n-1).

Similarly, we can show the system M2 as follows:

M2 = −λ


−λ ...... B3

... ... ...

−1 ... ρ− λ− B1

λ
− B2

λ


︸ ︷︷ ︸

M3

= 0 (B.3)

Finally, we can obtain

λn−1

(
λ2 − ρλ+

n∑
i=1

Bi

)
= 0 (B.4)

Appendix D.

Like Proposition 1, using (15) and (16) yields:

k∗
j = k∗

j (k
∗
1, βj), (D.1)

where
∂k∗

j

∂βj

=
(W ∗ +R∗k∗

j )(k
0
j − k∗

j )

βj(R∗k0
j +W ∗)

. (D.2)

Note that
∂k∗j
∂k∗1

is given by (??) where i is replaced by j.

Substituting (D.1) into (12), we can obtain the following:

k∗
1 = k∗

1(βj), where
∂k∗

1

∂βj

= −
∂k∗j
∂βj

1 +
∑n

i=2

(
∂k∗i
∂k∗1

) > (<)0, if K∗ > (<)K0. (D.3)

Next, taking account of (14) between the agents j and 1, we obtain k∗
j = k∗

j (k
∗
1, βj)

given β1. Substituting (D.3) into this equation yields:

k∗
j = k∗

j (k
∗
1(βj), βj) (D.4)
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Therefore, we can show the following:

∂k∗
j

∂βj

=
(W ∗ +R∗k∗

j )(k
0
j − k∗

j )

βj(W ∗ +R∗k0
j )

B1. (D.5)

where B1 is given by:

B1 =

∂k∗j
∂k∗1

1 +
∑n

i=2

(
∂k∗i
∂k∗1

) + 1(> 0). (D.6)

Next, we consider the effect of βj on the capital stock held by the agent h. Making

use of (15) between the agents h and 1 given the preference parameters of both agents,

we obtain k∗
h = kh(k

∗
1). Furthermore, substituting (D.3) into the equation, we can

show that k∗
h = kh(k

∗
1(βj)). The impact of an increase in βj can be calculated as

follows:
∂k∗

h

∂βj

= −(W ∗ +R∗k∗
h)(k

0
h − k∗

h)

βj(W ∗ +R∗k0
h)

B1, (D.7)

As a result, we can show that
∂k∗j
∂βj

> (<)0 and
∂k∗h
∂βj

< (>)0 if K∗ < (>)K0.
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